Selected Polyphenols from Date (Phoenix dactylifera) as Anti-Virulence of Candida albicans Through Multiple Enzyme Targets

2022 Biointerface Research in Applied Chemistry  
Candida albicans (C. albicans) have long been attributed to various diseases like candidiasis and systemic diseases and exacerbate the symptoms of immunocompromised patients. C. albicans has enzymes that could function as drug targets to decrease its pathogenicity and eradicate the fungi. This research aimed to investigate the potency of selected polyphenols contained in dates (Phoenix dactylifera) in inhibiting important enzymes of C. albicans through molecular docking simulation. The
more » ... s of four target enzymes (Sap 1, Sap 2, Sap 3, Sap 5) of C. albicans and six selected polyphenol compounds from dates were downloaded from PDB and prepared using YASARA Structure. A molecular docking simulation was conducted using YASARA Structure. Docking results showed that procyanidin has a high binding affinity with target protein Sap 1 and Sap 5, while beta carotene has a high binding affinity with Sap 2 and Sap 3. The binding affinity range of all ligand-receptor complexes was as follows: Sap 1 (5.782 – 9.907 kcal/mol), Sap 2 (5.943 – 9.343 kcal/mol), Sap 3 (5.732 – 8.905 kcal/mol), and Sap 5 (5.873 – 9.430 kcal/mol). The interactions formed included hydrogen bonding, electrostatic and hydrophobic interactions, and unfavorable bindings. The data generated from molecular docking analysis warrant further experiments are necessary.
doi:10.33263/briac134.386 fatcat:elm2fh3zxfairiakh747hu2zye