An Efficient architecture for 128 bit Carry Select Adder

Kalpana Devi, G Swarna Kumari
2014 International Journal of New Trends in Electronics and Communication   unpublished
Design of area-and power-efficient high-speed data path logic systems forms the largest areas of research in VLSI system design. In digital adders, the speed of addition is limited by the time required to transmit a carry through the adder. Carry Select Adder (CSLA) is one of the fastest adders used in many data-processing processors to perform fast arithmetic functions. From the structure of the CSLA, it is clear that there is span for reducing the area and power consumption in the CSLA. This
more » ... ork uses a simple and efficient gate-level modification to drastically reduce the area and power of the CSLA. Based on this modification 8, 16, 32, 64 and 128-bit square-root CSLA (SQRT CSLA) architectures have been developed and compared with the regular SQRT CSLA architecture. The proposed design has reduced area and power as compared with the regular SQRT CSLA with only a minor increase in the delay. This work estimates the performance of the proposed designs in terms of delay, area are implemented in Xilinx ISE.