Selection by parasites for clonal diversity and mixed mating

Curtis M. Lively, R. Stephen Howard
1994 Philosophical Transactions of the Royal Society of London. Biological Sciences  
On theoretical grounds, coevolutionary interactions with parasites can select for cross-fertilization, even when there is a twofold advantage gained by reproducing through uniparental means. The suspected advantage of cross-fertilization stems from the production of genetically rare offspring, which are expected to be more likely to escape infection by coevolving enemies. In the present study, we consider the effects that parasites have on parthenogenetic mutants in obligately sexual, dioecious
more » ... populations. Computer simulations show that repeated mutation to parthenogenesis can lead to the accumulation of clones with different resistance genotypes, and that a moderately diverse set of clones could competitively exclude the ancestral sexual subpopulation. The simulations also show that, when there are reasonable rates of deleterious mutation, Muller's ratchet combined with coevolutionary interactions with parasites can lead to the evolutionary stability of cross-fertilization. In addition, we consider the effects that parasites can have on the evolution of uniparental reproduction in cosexual populations. Strategy models show that parasites and inbreeding depression could interact to select for evolutionarily stable reproductive strategies that involve mixtures of selfed and outcrossed progeny.
doi:10.1098/rstb.1994.0144 pmid:7708824 fatcat:l27g3zyrfzgchhms6tanc4wvfy