Targeting of SNAP-25 to Membranes Is Mediated by Its Association with the Target SNARE Syntaxin

Karen Vogel, Jean-Pierre Cabaniols, Paul A. Roche
2000 Journal of Biological Chemistry  
The docking and fusion of synaptic vesicles with the presynaptic plasma membrane require the interaction of the vesicle-associated membrane protein VAMP with the plasma membrane proteins syntaxin and SNAP-25. Both of these proteins behave as integral membrane proteins, although they are unusual in that they insert into membranes post-translationally. Whereas VAMP and syntaxin possess hydrophobic transmembrane domains, SNAP-25 does not, and it is widely believed that SNAP-25 traffics to and
more » ... ts into membranes by posttranslational palmitoylation. In pulse-chase biosynthesis studies, we now show that SNAP-25 and syntaxin rapidly bind to each other while still in the cytosol of neuroendocrine and transfected heterologous cells. Cell fractionation studies revealed that cytosolic SNAP-25⅐syntaxin complexes then traffic to and insert into membranes. Furthermore, the association of SNAP-25 with membranes is dramatically enhanced by syntaxin, and the transmembrane domain of syntaxin is essential for this effect. Surprisingly, despite the importance of the SNAP-25 palmitoylation domain for membrane anchoring at steady state, removal of this domain did not inhibit the initial association of newly synthesized SNAP-25 with membranes in the presence of syntaxin. These data demonstrate that the initial attachment of newly synthesized SNAP-25 to membranes is a consequence of its association with syntaxin and that it is only after syntaxin-mediated membrane tethering that SNAP-25 is palmitoylated.
doi:10.1074/jbc.275.4.2959 pmid:10644766 fatcat:uw7n2jgoubdsxjdx7d4dgus24u