Separability of embedded surfaces in 3-manifolds

Piotr Przytycki, Daniel T. Wise
2014 Compositio Mathematica  
AbstractWe prove that if$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$is a properly embedded$\pi _1$-injective surface in a compact 3-manifold$M$, then$\pi _1S$is separable in$\pi _1M$.
doi:10.1112/s0010437x14007350 fatcat:nov42pebkjfyvbl4ju3usqaici