A Categorical Model of the Fusion Calculus

Marino Miculan
2008 Electronical Notes in Theoretical Computer Science  
We provide a categorical presentation of the Fusion calculus. First we give Working in a suitable category of presheaves, we describe the syntax as initial algebra of a signature endofunctor, and the semantics as coalgebras of a "behaviour" endofunctor. To this end, we first give a a new, congruence-free presentation of the Fusion calculus; then, the behaviour endofunctor is constructed by adding in a systematic way a notion of "state" to the intuitive endofunctor induced by the LTS. Coalgebras
more » ... can be given a concrete presentation as "stateful indexed labelled transition systems"; the bisimilarity over these systems is a congruence, and corresponds to hyperequivalence. Then, we model the labelled transition system of Fusion by abstract categorical rules. As a consequence, we get a semantics for the Fusion calculus which is both compositional and fully abstract: two processes have the same semantics iff they are bisimilar, that is, hyperequivalent.
doi:10.1016/j.entcs.2008.10.017 fatcat:hj3g4ryhmbgvdi24twdtlcxbsu