Methylation-Based Age Estimation in a Wild Mouse [article]

Tom J Little, Aine N O'Toole, Andrew Rambaut, Tamir Chandra, Riccardo Marioni, Amy B Pedersen
2020 bioRxiv   pre-print
The age structure of populations, or the ageing rate of individuals, impacts aspects of ecology, epidemiology and conservation. Yet for many wild organisms, age is an inaccessible trait. In many cases measuring age or ageing rates in the wild requires molecular biomarkers of age. Epigenetic clocks based on DNA methylation have been shown to accurately estimate the age of humans and laboratory mice, but they also show variable ticking rates that are associated with mortality risk above and
more » ... that predicted by chronological age. Thus, epigenetic clocks are proving to be useful markers of both chronological and biological age, and they are beginning to be applied to wild mammals and birds. We have acquired strong evidence that an accurate clock is possible for the wood mouse Apodemus sylvaticus by adapting epigenetic information from the laboratory mouse (Mus musculus). Apodemus sylvaticus is a well-studied, common small mammal in the UK and Europe, which is amenable to large-scale experimental perturbations and longitudinal sampling of individuals across their lives. These features of the wood mouse system offer opportunities to disentangle causal relationships between ageing rates and environmental stress. Our wood mouse epigenetic clock is PCR-based, and so requires only tiny amounts of tissue accessible through non-destructive sampling. We quantified methylation using Oxford Nanopore sequencing technology and present a new bioinformatics pipeline for data analysis. We thus describe a new and generalizable system that should enable ecologists and other field biologists to go from small tissue samples to an epigenetic clock for their study animal, which will enable investigations of ageing in the wild which where previously inaccessible.
doi:10.1101/2020.07.16.203687 fatcat:txnuc2hodbgnpn5v3ipshpwlcy