A microscopic model of the Stokes–Einstein relation in arbitrary dimension

Benoit Charbonneau, Patrick Charbonneau, Grzegorz Szamel
2018 Journal of Chemical Physics  
The Stokes-Einstein relation (SER) is one of the most robust and widely employed results from the theory of liquids. Yet sizable deviations can be observed for self-solvation, which cannot be explained by the standard hydrodynamic derivation. Here, we revisit the work of Masters and Madden [J. Chem. Phys. 74, 2450-2459 (1981)], who first solved a statistical mechanics model of the SER using the projection operator formalism. By generalizing their analysis to all spatial dimensions and to
more » ... ly structured solvents, we identify a potential microscopic origin of some of these deviations. We also reproduce the SER-like result from the exact dynamics of infinite-dimensional fluids.
doi:10.1063/1.5029464 pmid:29907017 fatcat:vvtbne2vpbgt5kfbaz2ki4brze