A Single-Letter Upper Bound on the Feedback Capacity of Unifilar Finite-State Channels [article]

Oron Sabag, Haim H. Permuter, Henry D. Pfister
2016 arXiv   pre-print
An upper bound on the feedback capacity of unifilar finite-state channels (FSCs) is derived. A new technique, called the Q-contexts, is based on a construction of a directed graph that is used to quantize recursively the receiver's output sequences to a finite set of contexts. For any choice of Q-graph, the feedback capacity is bounded by a single-letter expression, C_fb≤ I(X,S;Y|Q), where the supremum is over P_X|S,Q and the distribution of (S,Q) is their stationary distribution. It is shown
more » ... at the bound is tight for all unifilar FSCs where feedback capacity is known: channels where the state is a function of the outputs, the trapdoor channel, Ising channels, the no-consecutive-ones input-constrained erasure channel and for the memoryless channel. Its efficiency is also demonstrated by deriving a new capacity result for the dicode erasure channel (DEC); the upper bound is obtained directly from the above expression and its tightness is concluded with a general sufficient condition on the optimality of the upper bound. This sufficient condition is based on a fixed point principle of the BCJR equation and, indeed, formulated as a simple lower bound on feedback capacity of unifilar FSCs for arbitrary Q-graphs. This upper bound indicates that a single-letter expression might exist for the capacity of finite-state channels with or without feedback based on a construction of auxiliary random variable with specified structure, such as Q-graph, and not with i.i.d distribution. The upper bound also serves as a non-trivial bound on the capacity of channels without feedback, a problem that is still open.
arXiv:1604.01878v1 fatcat:gj6cau7vlzd5zedamgcthxs6aa