BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain

Martina Giovannella, Davide Contini, Marco Pagliazzi, Antonio Pifferi, Lorenzo Spinelli, Rainer Erdmann, Roger Donat, Ignacio Rocchetti, Matthias Rehberger, Niels König, Robert Heinrich Schmitt, Alessandro Torricelli (+2 others)
The BabyLux device is a hybrid diffuse optical neuromonitor that has been developed and built to be employed in neonatal intensive care unit for the noninvasive, cot-side monitoring of microvascular cerebral blood flow and blood oxygenation. It integrates time-resolved near-infrared and diffuse correlation spectroscopies in a user-friendly device as a prototype for a future medical grade device. We present a thorough characterization of the device performance using test measurements in
more » ... y settings. Tests on solid phantoms report an accuracy of optical property estimation of about 10%, which is expected when using the photon diffusion equation as the model. The measurement of the optical and dynamic properties is stable during several hours of measurements within 3% of the average value. In addition, these measurements are repeatable between different days of measurement, showing a maximal variation of 5% in the optical properties and 8% for the particle diffusion coefficient on a liquid phantom. The variability over test/retest evaluation is <3%. The integration of the two modalities is robust and without any cross talk between the two. We also perform in vivo measurements on the adult forearm during arterial cuff occlusion to show that the device can measure a wide range of tissue hemodynamic parameters. We suggest that this platform can form the basis of the next-generation neonatal neuromonitors to be developed for extensive, multicenter clinical testing.
doi:10.18154/rwth-2020-03430 fatcat:l33csr55bbhyzid2ssnt6vruza