Novel Constraints in the Search for a Van Der Waals Energy Functional

Bradley Paul Dinte, John Dobson, University, My
2018
In modelling the energetics of molecules and solids, the need for practical electron density functionals that seamlessly include the van der Waals interaction is growing. Such functionals are still in their infancy, and there is yet much experimentation to be performed in the formulation and numerical testing of the requisite approximations. A ground-state density functional approach that uses the exact relations of the adiabatic connection formula and the fluctuation-dissipation theorem to
more » ... tion theorem to obtain the xc energy from the density-density response function seems promising, though a direct local density approximation for the interacting susceptibility will fail to yield the vdW interaction. Significant nonlocality can be built into the interacting susceptibility by screening a 'bare' susceptibility, for which a carefully chosen constraint-obeying local approximation is sufficient to yield a non-trivial van der Waals energy [6]. The constraints of charge conservation, and no response to a constant potential, are guaranteed by expressing the bare susceptibility in terms of the double gradients of a nonlocal bare polarisability. for which it should be easier to make an approximation based on physical principles than it would be for the susceptibility. The 'no-flow' condition is also deemed important. In this work, a simple delta-function approximation for the nonlocal polarisability is fully constrained by a new version of a recently-discovered force theorem (sum rule), requiring the additional input of the independent-electron Kohn-Sham potential. This constrained polarisability cannot be used as input for the seamless vdW scheme, which requires a non-delta-function bare polarisability, and is instead applied to systems containing spherical fragments in a perturbative/asymptotic fashion for calculation of the widely-separated van der Waals interaction. The main thrust of this work is an investigation of the efficacy of the force theorem to constrain simple approximations for response quantities. Many recent perturbativ [...]
doi:10.25904/1912/1032 fatcat:qblmekxf2fflphb3zeweajthku