A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
A Neural Population Mechanism For Rapid Learning
[article]
2017
bioRxiv
pre-print
Long-term learning of language, mathematics, and motor skills likely requires plastic changes in the cortex, but behavior often requires faster changes, sometimes based even on single errors. Here, we show evidence of one mechanism by which the brain can rapidly develop new motor output, seemingly without altering the functional connectivity between or within cortical areas. We recorded simultaneously from hundreds of neurons in the premotor (PMd) and primary motor (M1) cortices, and computed
doi:10.1101/138743
fatcat:qx3dbwngrjc6hdmwlhgcqdo3tq