Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling

Bassam Tawabini, Mohamed A. Yassin, Mohammed Benaafi, John Adedapo Adetoro, Abdulaziz Al-Shaibani, S. I. Abba
2022 Sustainability  
Increasing anthropogenic emissions due to rapid industrialization have triggered environmental pollution and pose a threat to the well-being of the ecosystem. In this study, the first scenario involved the spatio-temporal assessment of topsoil contamination with trace metals in the Dammam region, and samples were taken from 2 zones: the industrial (ID), and the agricultural (AG) area. For this purpose, more than 130 spatially distributed samples of topsoil were collected from residential,
more » ... rial, and agricultural areas. Inductively coupled plasma—optical emission spectroscopy (ICP-OES)—was used to analyze the samples for various trace metals. The second scenario involved the creation of different artificial intelligence (AI) models, namely an artificial neural network (ANN) and a support vector regression (SVR), for the estimation of zinc (Zn), copper (Cu), chromium (Cr), and lead (Pb) using feature-based input selection. The experimental outcomes depicted that the average concentration levels of HMs were as follows: Chromium (Cr) (31.79 ± 37.9 mg/kg), Copper (Cu) (6.76 ± 12.54 mg/kg), Lead (Pb) (6.34 ± 14.55 mg/kg), and Zinc (Zn) (23.44 ± 84.43 mg/kg). The modelling accuracy, based on different evaluation criteria, showed that agricultural and industrial stations showed performance merit with goodness-of-fit ranges of 51–91% and 80–99%, respectively. This study concludes that AI models could be successfully applied for the rapid estimation of soil trace metals and related decision-making.
doi:10.3390/su14042192 fatcat:7jkgjnyuvngt3mb6k5v3q4fmxy