The Complexity of Equivariant Unification [chapter]

James Cheney
2004 Lecture Notes in Computer Science  
Nominal logic is a first-order theory of names and binding based on a primitive operation of swapping rather than substitution. Urban, Pitts, and Gabbay have developed a nominal unification algorithm that unifies terms up to nominal equality. However, because of nominal logic's equivariance principle, atomic formulas can be provably equivalent without being provably equal as terms, so resolution using nominal unification is sound but incomplete. For complete resolution, a more general form of
more » ... ification called equivariant unification, or "unification up to a permutation" is required. Similarly, for rewrite rules expressed in nominal logic, a more general form of matching called equivariant matching is necessary. In this paper, we study the complexity of the decision problem for equivariant unification and matching. We show that these problems are NPcomplete in general. However, when one of the terms is essentially firstorder, equivariant and nominal unification coincide. This shows that equivariant unification can be performed efficiently in many interesting common cases: for example, any purely first-order logic program or rewrite system can be run efficiently on nominal terms.
doi:10.1007/978-3-540-27836-8_30 fatcat:tgklvhk5ane45cdq7dqwxrjuvi