Wavelet Domain Bootstrap for Testing the Equality of Bivariate Self-Similarity Exponents

Herwig Wendt, Patrice Abry, Gustavo Didier
2018 2018 IEEE Statistical Signal Processing Workshop (SSP)  
Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible To cite this version: Wendt, Herwig and Abry, Patrice and Didier, Gustavo Wavelet domain bootstrap for testing the equality of bivariate self-similarity exponents. (2018) In: IEEE Workshop on statistical signal processing (SSP ABSTRACT Self-similarity has been widely used to model scale-free dynamics, with significant
more » ... ccesses in numerous applications that are very different in nature. However, such successes have mostly remained confined to univariate data analysis while many applications in the modern "data deluge" era involve multivariate and dependent data. Operator fractional Brownian motion is a multivariate self-similar model that accounts for multivariate scale-free dynamics and characterizes data by means of a vector of self-similarity exponents (eigenvalues). This naturally raises the challenging question of testing the equality of exponents. Expanding on the recently proposed wavelet eigenvalue regression estimator of the vector of self-similarity exponents, in the present work we construct and study a wavelet domain bootstrap test for the equality of self-similarity exponents from one single observation (time series) of multivariate data. Its performance is assessed in a bivariate setting for various choices of sample size and model parameters, and it is shown to be satisfactory for use on real world data. Practical routines implementing estimation and testing are available upon request.
doi:10.1109/ssp.2018.8450710 dblp:conf/ssp/WendtAD18 fatcat:t4j5etoet5cfrnmyqeioxx6yeq