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Studying the Robustness of Anti-adversarial

Federated Learning Models Detecting Cyberattacks

in IoT Spectrum Sensors

Pedro Miguel Sánchez Sánchez1, Alberto Huertas Celdrán∗2, Timo Schenk2, Adrian Lars Benjamin Iten2,

Gérôme Bovet3, Gregorio Martı́nez Pérez1, and Burkhard Stiller2

Abstract—Device fingerprinting combined with Machine and
Deep Learning (ML/DL) report promising performance when
detecting cyberattacks targeting data managed by resource-
constrained spectrum sensors. However, the amount of data
needed to train models and the privacy concerns of such
scenarios limit the applicability of centralized ML/DL-based
approaches. Federated learning (FL) addresses these limitations
by creating federated and privacy-preserving models. However,
FL is vulnerable to malicious participants, and the impact
of adversarial attacks on federated models detecting spectrum
sensing data falsification (SSDF) attacks on spectrum sensors has
not been studied. To address this challenge, the first contribution
of this work is the creation of a novel dataset suitable for
FL and modeling the behavior (usage of CPU, memory, or file
system, among others) of resource-constrained spectrum sensors
affected by different SSDF attacks. The second contribution is
a pool of experiments analyzing and comparing the robustness
of federated models according to i) three families of spectrum
sensors, ii) eight SSDF attacks, iii) four scenarios dealing with
unsupervised (anomaly detection) and supervised (binary classifi-
cation) federated models, iv) up to 33% of malicious participants
implementing data and model poisoning attacks, and v) four
aggregation functions acting as anti-adversarial mechanisms to
increase the models robustness.

Index Terms—Resource-constrained Devices, Cyberattacks,
Fingerprinting, Federated Learning, Adversarial Attacks, Ro-
bustness.

I. INTRODUCTION

In crowdsensing, large groups of individuals collaborate in

a crowdsourcing fashion, typically leveraging devices as sen-

sors [10]. Employing resource-constrained spectrum sensors

(Raspberry Pis equipped with software-defined radio kits),

the ElectroSense initiative marks an exemplary network for

crowdsensing in particular [15]. However, the rapid growth

of spectrum sensors also has accelerated the emergence of
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new and specialized cyberattacks, called spectrum sensing data

falsification (SSDF) attacks [21]. In such a context, the privacy

and integrity of sensors measurements are at risk.

In order to detect SSDF attacks affecting resource-

constrained sensors, signature-based approaches present the

limitation of not being effective against new attacks that have

not been observed during the signature creation stage (zero-

day attacks). To overcome this limitation, dynamic anomaly

detectors considering fingerprinting are gaining relevance. This

approach monitors device activities such as the usage of

CPU, memory, network interfaces, or file system when there

is no infection, and in a second stage, detects deviations

produced by SSDF attacks [18]. The detection phase can

be implemented using different techniques. One of the most

lightweight in terms of resource consumption is based on rules,

but the creation of precise rules requires expert knowledge and

a relevant amount of time in complex crowdsensing scenarios

[5]. Knowledge-based solutions have also been proposed in

the literature, but they do not scale well with many sensors,

requiring a lot of time to model and detect attacks [8]. Finally,

machine and deep learning (ML/DL) techniques are gaining

enormous relevance due to their detection performance, time,

and relative simplicity [1].

Despite the benefits of anomaly detectors combining device

fingerprinting and ML/DL, they present some characteristics

limiting their applicability in crowdsensing scenarios where

data belongs to different sensors, and it cannot be shared

due to privacy restrictions. Thus, federated learning (FL)

becomes increasingly relevant [22]. Compared to centralized

approaches, FL aims to train a federated model collaboratively

but in a decentralized and privacy-preserving fashion. Each

participant of the federation trains a model with its own

data and shares the model parameters to create the federated

model. However, FL also presents security concerns, being

adversarial attacks launched by malicious participants one

of the most important ones. In this context, the literature

has proposed several data and model falsification attacks

consisting of poisoning data, labels, or weights during training

to exchange fake model parameters with the entity (or entities)

creating the federated model [17]. To overcome this problem,

different countermeasures have been proposed, such as the

usage of secure aggregation functions [13]. However, due to

the novelty of the field, the combination of FL and behavioral

fingerprinting for detecting SSDF attacks on spectrum sensor

devices poses several open challenges.
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First, there is an evident lack of FL-oriented datasets mod-

eling fingerprints of resource-constrained devices belonging

to real platforms [16]. Second, there is no work measuring

the performance of FL models using device fingerprinting to

detect SSDF attacks affecting spectrum sensors and comparing

its detection performance with existing traditional ML/DL-

based solutions. Last but not least, there is no work studying

the robustness of FL-based solutions oriented to detect SSDF

attacks in spectrum sensors and equipped with different anti-

adversarial mechanisms to mitigate the impact of heteroge-

neous data and model poisoning attacks.

To improve the previous challenges, this paper presents the

following contributions:

1) The creation of a novel device behavioral fingerprinting

dataset suitable for FL scenarios (publicly available

in [19]). This dataset contains the normal and under-

attack behavior of four ElectroSense spectrum sensors,

which are implemented with three different families of

Raspberry Pis connected to software-defined radio kits.

About 75 internal events belonging to the usage of

CPU, memory, network interface, file systems, and other

relevant dimensions are monitored in each sensor for two

different versions of normal behavior as well as eight

SSDF attacks.

2) The usage of the dataset to conduct a pool of experi-

ments evaluating and comparing the performance of (i)

DL models under a horizontal FL scheme, and (ii) tra-

ditional DL approaches where a centralized aggregation

neglects privacy. This evaluation comprises the definition

of four federated scenarios dealing with anomaly de-

tection (using Autoencoder), binary classification (with

multilayer perceptron), and different participants.

3) The study of the federated models robustness in two of

the previous federated scenarios under different condi-

tions. The conditions vary in terms of (i) anti-adversarial

aggregation mechanisms (two variants of trimmed mean,

and coordinate-wise median), (ii) an increasing number

of malicious participants (from 8 to 33%), and (iii) het-

erogeneous data and model poisoning attacks affecting

both supervised and unsupervised FL models.

The remainder of this article is organized as follows.

Section II reviews solutions combining fingerprinting and

ML/DL/FL approaches able to detect cyberattacks affecting

IoT. While Section III provides the details of the FL-oriented

dataset created in this work, Section IV evaluates and com-

pares the performance of different FL and traditional DL

models trained and evaluated in heterogeneous conditions and

scenarios. Section V analyzes the robustness of FL models

affected by different adversarial attacks. Finally, Section VI

draws conclusions and next steps.

II. RELATED WORK

This section reviews related work considering behavioral

fingerprinting and ML/DL approaches, both centralized and

federated, to detect cyberattacks affecting IoT.

In [18] a broad survey of device fingerprinting reviews

a good number of works detecting cybersecurity issues in

IoT devices. One of the main conclusions of this survey is

that there is a current trend towards combining device fin-

gerprinting and ML/DL/FL techniques to detect cybersecurity

attacks. In this context, the work most related to the paper

at hand in terms of attacks, devices, and behavioral events is

proposed in [7]. The authors combine unsupervised ML/DL

techniques and the usage of device resources (such as CPU,

memory, file system, or the network interface, among others)

to detect anomalies produced by seven SSDF attacks affecting

different Raspberries Pi acting as ElectroSense sensors. A

pool of experiments reports 80-100% TPR when detecting

five of the seven SSDF attacks. In [2], the authors look at

frequency distributions of protocol attributes and run clustering

algorithms to capture particularities of botnet behaviors. They

report 97-100% accuracy, and as in most works, networking

features are leveraged as the behavioral source. The authors

of [9] use ML techniques combined with network packets to

detect heterogeneous malware in IoT devices. They achieve

95% accuracy on their test sets. Comparing the previous three

works and the paper at hand, the main difference is that the

proposed ML/DL models are created in a centralized manner,

which means that the privacy of the data used to train the

models has not been guaranteed, one of the main contributions

of this work.

Dealing with solutions that use FL to detect malware

affecting IoT devices in privacy-preserving scenarios. The

authors of [20] propose a solution for industrial IoT that

analyzes Android application samples and behavioral data in

an industrial context. They report 97-100% accuracy when

detecting different malware samples. [14] presents a different

use case for FL in the field of intrusion detection with up

to 97% accuracy. This work studies adversarial implications

in FL and employs blockchain technology as an alternative

to mitigate them. Therefore, this work focuses more on the

accountability of participants instead of reducing the impact

of the attacks. The main difference between the previous

approaches and the one proposed in this work is that they

do not consider behavioral fingerprinting, do not consider the

problem of malicious participants, and do not evaluate the

robustness of their models against adversarial attacks.

Most related to this work, several works combine FL and

device fingerprinting to detect cyberattacks. [6] presents an

FL system to detect malware in Android. The authors train

Support Vector Machine classifiers in a federated scenario us-

ing device features such as application programming interface

(API) calls and permission configuration to obtain 94-96%

F1-score. While API calls correspond to device behavioral

source fingerprints, the work at hand analyzes behavioral data

sources on a much lower level. In [12], a federated anomaly

detection system is proposed for the IoT. It leverages device-

type profiles of the communications to detect malware with

96% accuracy. In contrast to the work at hand, the previous

solution is not effective against malware affecting data avail-

ability, integrity or confidentiality. The authors of [16] leverage

the N-BaIoT dataset to train and evaluate FL models. They

achieve good accuracy in federated scenarios dealing with

network traffic events. In addition to that, adversarial impacts

are measured for selected attacks, and different mechanisms
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of robust aggregation are evaluated. While the paper at hand

considers adversarial attacks against federations, it applies

and analyzes these concepts in a scenario with very different

characteristics to the one used in [16]. In this sense, N-BaIoT

contains network traffic from nine different IoT devices such

as webcams and smart doorbells. However, N-BaIoT does not

consider spectrum sensors such as Raspberry Pis equipped

with software-defined radio kits (as this work does), and does

not model device behavioral fingerprinting events.

As can be seen in TABLE I, none of the related work

studies the detection performance and robustness of federated

models detecting SSDF attacks. Only [7] covers the same

attacks and devices considered in this work, but from a tra-

ditional ML/DL perspective and without considering privacy-

preserving scenarios. Moreover, TABLE I shows that device

behavioral fingerprints have not been used for the use case

of federated malware detection. In conclusion, this literature

review demonstrates the lack of works and datasets combining

behavioral fingerprints and FL to detect cyberattacks in IoT

devices similar to those used in crowdsensing platforms.

Furthermore, to the best of our knowledge, there is no work

studying the impact of adversaries on the robustness of the

previous federated models.

III. DATASET CREATION

This section describes the novel device fingerprinting

dataset created for federated scenarios. In particular, it presents

(i) the crowdsensing platform and the spectrum sensors used to

create the dataset, (ii) the SSDF attacks affecting the deployed

ElectroSense sensors, (iii) the events selected to create the

fingerprints, and (iv) the exploration of the dataset content.

A. ElectroSense Sensors & SSDF Attacks

ElectroSense is a real and collaborative crowdsensing plat-

form that pursues the goal of monitoring the electromag-

netic space [4]. ElectroSense is composed of a multitude of

spectrum sensors built from cheap commodity hardware like

Raspberry Pis equipped with software-defined radio scanners

and antennas. Each sensor monitors the different bands and

segments of the radio frequency spectrum within its location.

Sensed spectrum data is periodically sent to a backend plat-

form in charge of storing, pre-processing, and analyzing the

data to provide services. These services range from spectrum

occupancy monitoring to transmission decoding. In this sce-

nario, four physical spectrum sensors have been deployed in

two locations. TABLE II summarizes the devices identifiers,

hardware characteristics, and locations.

For each ElectroSense sensor, two versions of the official

and publicly available software are used. The first version

is the current sensing application, installed by default in the

sensor. The second version of the ElectroSense sensor software

is an old one, available on the official ElectroSense GitHub [3].

Additionally, eight different SSDF attacks are considered to

infect the four sensors. These SSDF attacks are executed after

modifying the ElectroSense sensor source code and compiling

a new version of the executable. The main goal of these

SSDF attacks is to manipulate the data of particular spectrum

segments monitored by the sensors (in different ways) and

send poisoned spectrum data to the ElectroSense backend

platform. Despite the differences in terms of attacks impacts,

all attacks affect the same number of spectrum segments

(20 MHz). TABLE III summarizes the main aspects of the

behaviors considered during the creation of the dataset. More

details about the implementation and functionality of the SSDF

attacks can be found in [7].

The previous behaviors are sequentially executed in the

devices of TABLE II for five days (the normal behaviors) and

four hours (the attacks), as indicated in TABLE III. To create

the fingerprinting dataset, 75 internal events of each device

have been monitored in time windows of 50 s using the perf

Linux command. These events belong to the following device

data sources: CPU, virtual memory, network, file system,

scheduler, device drivers, and random numbers. The number

of events, per event type and family, contained in the datasets

can be seen in Fig. 1. As a summary, the dataset includes four

ElectroSense sensors, ten behaviors (two normal and eight

SSDF attacks), 75 events belonging to eight event families,

and a total of 73396 samples (approximately 60000 samples

of normal and 13396 of malicious behavior). The dataset is

publicly available in [19].

B. Data Exploration

This section explores the created dataset to find data patterns

and determine the suitability of ML/DL/FL techniques to

detect SSDF attacks. This analysis also aims to determine if

the data contained in the dataset is independent and identically

distributed (IID) or non-IID. For that, three types of studies are

performed. The first analyzes the evolution of data over time.

The second focuses on the distributions of data belonging to

different devices. Finally, the third explores data distributions

according to various SSDF attacks.

The variation of behavioral data over time is essential to

determine the stability of fingerprints, and the suitability of

ML/DL/FL approaches to detect normal behavior and SSDF

TABLE I: Comparison of Related Work

Source Device Types Attack Type Data/Fingerprints ML Approach Prediction Privacy Robustness

[7] Raspberry Pis SSDF Usage of Resources ML/DL Anomaly Detection no no
[2] Multiple Botnets Communication-based ML Classification (Distances to clusters) no no
[9] IoT devices Botnets Communication-based ML Classification no no
[20] Industrial IoT devices Android Malware App Information FL, DL Classification yes yes, GAN-based
[14] Computers/Machines multiple Communication-based FL, DL Anomaly Detection (Autoencoder) yes yes, blockchain-based
[6] Mobile (Android) Android Malware App Information FL, ML Classification (SVM) yes no
[12] IoT devices IoT Malware Communication-based FL, ML Anomaly Detection yes no
[16] IoT devices Botnets Communication-based FL, DL Anomaly Detection and Classification yes yes, aggregation
ours Raspberry Pis SSDF Usage of Resources FL, DL Anomaly Detection and Classification yes yes, aggregation
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TABLE II: Details of the Devices Making up the Scenario

Device ID Type/Model RAM Location

RPi3 3 Model B+ 1GB Zurich
RPi4 1 4 Model B 2GB Zug
RPi4 2 4 Model B 2GB Zug
RPi4 3 4 Model B 4GB Zurich

TABLE III: Behaviors Monitored During the Dataset Creation

Behavior Description Time

Normalv1 Current ElectroSense application sensing the spectrum 5 days

Normalv2 Old ElectroSense application sensing the spectrum 5 days

Delay
Sense different outdated spectrum data of affected

segments
4 hours

Confusion Swap the spectrum data between affected segments 4 hours

Freeze
Sense the same outdated spectrum data in affected

segments
4 hours

Hop Add random noise to random parts of affected segments 4 hours

Mimic
Copy the spectrum data of one segment into another

segment
4 hours

Noise
Add random noise to the spectrum data of affected

segments
4 hours

Repeat Replicate the same spectrum data in all affected segments 4 hours

Spoof
Copy the spectrum data of one segment into another

segment and add random noise
4 hours

Event

Families

Network

(12)
Virtual

Memory

(21)File

Systems

(12)

CPU

(4)

Scheduler

(14)

System

Calls (2)

Device
Drivers

(7)
sched: 5

signal: 2

task: 1

timer: 2

cpu-migrations: 1

cs: 1

alarmtimer: 2

block: 6

jbd2: 2

filemap: 1

cachefiles: 3

kmem: 8

writeback: 11

page-fault: 1

pagemap:1

tcp: 2

udp: 1

net: 3

sock: 1

skb:3

fib: 1

qdisc: 1

raw_syscalls: 2

clk: 1

ipi: 1

rpm: 2

irq: 3

preemptirq: 1

gpio: 1

dma: 1

mmc: 1

Random
Numbers

(3)

random: 3

Fig. 1: Device Fingerprinting Events of the FL-oriented

Dataset

attacks. In this context and as an example, Fig. 2 shows

the values of the kmen:mm page pcpu drain event belong-

ing to the Virtual Memory family across the time and for

each device. As can be seen, the values are periodic, with

some repetitive peaks. Exploring more in detail Fig. 2, it is

also interesting to see the different distribution for RPi3 (in

red) and RPi4s (in blue, orange, and green), indicating that

behavioral data of similar devices is IID, and for different

devices is non-IID. In particular, the range of values of the

kmen:mm page pcpu drain event for the RPi3 is different

from the range for the RPi4 devices. These characteristics are

also visible in the majority of events, but they are not included

due to room constraints.

To analyze the differences between normal and under-attack

behaviors per device the distributions of each event have been

studied. As a representative example, Fig. 3 shows for RPi4 1

and the urandon read event how some attacks (hop, noise,

and spoof) offer a higher number of random reads due to the

generation of random noise. Another example can be seen

in Fig. 4, where the writeback mark inode dirty event of an

Fig. 2: kmen:mm page pcpu drain event for Normal Behavior

in all Devices

RPi4 1 is differently affected by the copy and swap operations

of some SSDF attacks (being disorder the attack with the

lowest impact on the event values).

Fig. 3: urandon read Event of all Behaviors on RPi4 1

Fig. 4: writeback mark inode dirty Event of all Behaviors on

RPi4 1

From the previous data exploration, it can be concluded

that attacks do generally not impact the same features equally

across different device types. Therefore, generalization across

attacks and device types is challenging, and ML/DL/FL usage

seems adequate for finding the events and values separating

normal and SSDF attacks. In terms of data distribution, the

exploration shows that the IID data is present in devices of the

same device type and between the RPi4 families. However,

devices from RPi3 and RPi4 families present non-IID data.

Furthermore, the independence of the data samples allows that

the data of a single device can be used to simulate additional

participants of the same device type, which is critical for fed-

erated scenarios. Finally, external factors like network outages

could potentially affect the data distributions. However, no

significant systematic influence of external factors has been

identified during the data exploration.

IV. FEDERATED ATTACK DETECTION

This section evaluates the performance of different federated

models when detecting SSDF attacks and compares it with

centralized ML/DL approaches where data privacy is not

preserved.
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For that, two approaches have been considered. The first one

detects anomalies using an unsupervised Autoencoder, while

the second utilizes a supervised multilayer perceptron (MLP)

to classify normal and under-attack behaviors. The pipeline

and methodology followed to train and evaluate the federated

models are also detailed in this section. Finally, four scenarios

with different federation compositions (in terms of number and

type of participants, behaviors, and detection tasks) are created

to evaluate the performance of the previous FL models and

compare it with centralized ML/DL approaches.

A. Federated ML Pipeline

The federated setting needs adaptations from the typical ML

pipeline to handle distributed data and models. In particular,

the scaling phase and the threshold selection have to be

adapted to allow a global model to aggregate the knowledge of

involved participants. Furthermore, a central coordinator needs

to run the federated learning pipeline iteratively. The following

subsections describe the necessary steps.

1) Dataset Splitting and Feature Preprocessing: Each par-

ticipant of the federation creates the following datasets: one

for training, one for validation and optimization of hyper-

parameters, and another for testing the model performance.

Those datasets are sampled from the respective dataset to avoid

overlapping between sets. Next, outlier filtering is performed

on the training and validation sets using the z-score. Z-score

is computed using the mean µ and the standard deviation

σ according to the formula x−µ
σ

. Data points that have an

absolute z-score ≥ 3 in any feature are excluded as they

could impair the model performance. Besides, features with

correlation of 1 in the datasets are filtered.

2) Federated Feature Scaling: Feature scaling in a fed-

erated setup does not require communication efforts, as a

global scaling for all participants must be put in place. Min-

max scaling is employed using the formula x−min
max−min

, but the

minimum and maximum values are determined on the data of

all the participants. Therefore, action from a central entity is

required to coordinate the scaling process, asking the minimum

and maximum of each feature to each participant and then

returning the global minimum and maximum for scaling. A

drawback of this approach is a certain loss of privacy since

every participant has to disclose the minimum and maximum

value of each feature. This issue could be addressed using

solutions such as homomorphic encryption, but it is out of the

scope of this work.

3) Model Setup, Training and Evaluation: Throughout this

work, both supervised and unsupervised models are evaluated.

It requires different data and methods to train the models

and make predictions. However, both models are trained on

a 68-dimensional input, which corresponds to the number of

relevant features after the preprocessing. Stochastic gradient

descent (SGD) is used as the optimization algorithm with a

learning rate of 1e-3 and a momentum term of 0.9.

In the anomaly detection scenarios, an Autoencoder with a

single hidden layer of size 32 is used. After the first linear

layer, batch normalization is applied and GELU is used as an

activation function on the hidden state. A second linear layer

transforms the hidden state back to its original size, followed

by a GELU activation function that returns the reconstructed

input. After the training phase, the anomaly threshold is

determined based on the mean (µ) and standard deviation (σ)

of the reconstructed mean square error (MSE). The formula

used to select the threshold is show in Equation 1.

threshold = µ+ 3 · σ (1)

The prediction then corresponds to determining the MSE

on reconstructing a given behavioral vector. If the MSE of the

recreated input is greater than the threshold, it is considered

an anomaly and, therefore, behavior under attack. Otherwise,

it is considered normal behavior.

In the binary classification scenarios, an MLP is used. A

linear layer produces a hidden state of size 256. Subsequently,

batch normalization and the GELU activation function are

applied to this hidden state. A second linear layer then returns

a single output neuron. A Binary Cross Entropy Loss function

with logits (BCEwithLogitsLoss) is used during training, which

applies the sigmoid activation function and minimizes the

logarithmic difference of the output to the encoded label (0

for normal behavior and 1 for attack behavior). Early stopping

is applied when there is no loss decrease greater than 1e-4 on

the validation set.

For the federated training, FederatedAveraging (FedAvg)

algorithm is used. Algorithm 1 describes the training loop in

the clients and the server. Generally, the federation is trained

for 15 aggregation rounds with five local epochs per participant

if not stated otherwise. It is important to note that the models

are relatively small and thus can also be trained on resource-

constrained hardware. Further, early stopping is implemented

per participant.

Algorithm 1 FederatedAveraging. The K clients are

indexed by k; B is the local minibatch size, E is the number

of local epochs, and η is the learning rate; w are the model

weights; Pk is the local dataset of client k. [11]

Server executes:

initialize w0

for each round t = 1,2... do

m← max(C ·K, 1)
St ← (random set of m clients)

for each client k ∈ St in parallel do

wk
t+1 ← ClientUpdate(k, wt)

wt+1 ←
∑K

k=1
nk

n
wk

t+1 //Aggregation

ClientUpdate(k,w): //Run on client k

B ← (split Pk into batches of size B)

for each local epoch i from 1 to W do

for batch b ∈ B do

w ← w − η▽ l(w; b) //Local update

return w to server

4) Federated Threshold Selection: For anomaly detection,

each participant sends its locally computed threshold to the

central coordinator, which determines a global threshold. De-

pending on the federation composition, the thresholds per

participant can vary heavily due to the non-IID data across
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different device types. It has to be taken into account when

choosing the federated threshold. While a simple mean may

perform reasonably in a setting with the same device type par-

ticipants, it may perform poorly in a federation with different

device types. Taking the maximum of the thresholds, on the

other hand, creates a vulnerability to an overstating participant

to impair the performance of the global model. Hence, a

reasonable compromise has to be found. This compromise is

built on the mean µ and standard deviation σ of the list of

thresholds that the participants send to the coordinator. Only

thresholds that have an absolute z-score that is <= 1.5 are

considered, choosing the maximum of those filtered values as

the global threshold.

B. Federated Scenarios and Detection Performance

This section creates four federated scenarios where hetero-

geneous FL models are trained and evaluated following the

previous pipeline. In addition, the detection performance of

these models is compared to the one obtained by centralized

approaches where data privacy is not preserved. For the sake

of fair comparisons, both the federated and central models use

the same algorithms, training and testing data, and hyperpa-

rameters. Finally, to show model performance and since the

test sets for each behavior are separated, the accuracy of the

model within each behavior test set is used.

The scenarios consider the devices and behaviors modeled

by the dataset explained in Section III to create the federations.

To decide the number of sensors participating in each scenario,

each participant must have enough data to achieve meaningful

convergence in its local training loop. Therefore, the scenarios

explained in this section restrict the number of participants per

device type to a maximum of 4. Below, each scenario details

the exact number and type of sensors used in its federation as

well as the behaviors considered for training and testing.

1) Scenario 1: Federated Anomaly Detection with Bal-

anced Device type: This scenario focuses on federated

anomaly detection to detect zero-day attacks when there is

a balanced federation of different sensors types (RPi3, RPi4

2GB, and RPi4 4GB). In particular, four participants of each

sensor type are generated to set a total of 12. Between the 12

participants of the federation a privacy-preserving Autonen-

coder is trained following the pipeline previously explained.

Each participant uses 1500 samples of its normal behavior for

training and 150 different normal samples for the threshold

selection task. Once the federated Autoencoder is trained, 75

samples per behavior (normal, normal v2, and eight SSDF

attacks) of each participant are evaluated.

TABLE IV reports the accuracy achieved by the federated

Autoencoder model per device type and behavior. The paren-

theses denote the difference with the accuracy of a central

model (not protecting data privacy) that concatenates all train

sets, and uses the same algorithm and hyperparameters. A

positive difference means that the federation outperforms the

simple central approach, whereas a negative difference is

the opposite. Finally, it is important to note that RPi4 2 is

excluded from training and only used for testing.

As can be seen in TABLE IV, both models (federated and

centralized) perform almost identically, a good signal for the

TABLE IV: Accuracy of Scenario 1 Autoencoder Model and

Difference with a Centralized Approach (in Parentheses)

Behavior RPi3 (diff.) RPi4 1 (diff.) RPi4 2 (diff.) RPi4 3 (diff.)

normal 96.0% (2.7%) 100% (1.3%) 100% (2.7%) 99.3% (0.7%)
normal v2 96.0% (3.3%) 96.7% (2.7%) 99.3% (0.7%) 98.7% (6.7%)

delay 100% (0%) 100% (0%) 100% (0%) 100% (0%)
disorder 100% (0%) 100% (0%) 100% (0%) 100% (0%)
freeze 0.7% (-8.7%) 4.00% (-0.7%) 2.0% (0%) 0% (-1.3%)
hop 100% (0%) 100% (0%) 100% (0%) 100% (0%)
mimic 100% (0%) 100% (0%) 100% (0%) 100% (0%)
noise 100% (0%) 100% (0%) 100% (0%) 100% (0%)
repeat 6.0% (-4.0%) 3.3% (-0.7%) 2.7% (-2.0%) 2.7% (-2.0%)
spoof 100% (0%) 100% (0%) 100% (0%) 100% (0%)

federated Autoencoder. More in detail, looking at the detection

of anomalies produced by SSDF attacks, both models cannot

detect freeze and repeat, but the rest of attacks are classified

correctly (≥96%). An important aspect is that the accuracy on

the second normal behavior (normal v2) is also high (96.00-

99.33%) despite not being used during training.

2) Scenario 2: Federated Anomaly Detection with New

Device type: This scenario evaluates whether a federated

model can also be useful for a new device type joining the

federation and detecting zero-day SSDF attacks. Thus, in this

scenario, the federated anomaly detection model is trained with

a total of eight participants belonging to two device types,

and subsequently, the model is evaluated on behavior samples

(normal and under-attack) of the new third device type. As

indicated in TABLE V, this is done for the three possible

combinations of device types, generating three federated Au-

toencoder. In this context, following the previously defined

pipeline each Autoencoder is trained. For each combination,

participants provide 1500 samples of normal behavior for

training, and 150 for the threshold selection. After that, 75

samples per behavior (two normal and eight attacks) of the

third device type are used for testing.

TABLE V: Federated Models Used in Scenario 2 and 4

Model ID Training Devices Testing Devices

Autoencoder/MLP 1 RPi3 & RPi4 1 RPi4 3
Autoencoder/MLP 2 RPi3 & RPi4 3 RPi4 1 & RPi4 2
Autoencoder/MLP 3 RPi4 1 & RPi4 3 RPi3

TABLE VI shows the accuracy of the three federated

Autoencoders and the difference with the centralized one.

As an example, the first column displays the accuracy of

Autoencoder 3 (see TABLE V), trained with four participants

of RPi4 1 and four of RPi4 3, and evaluated with the RPi3

samples. As in the previous scenario, RPi4 2 is excluded from

training and only used during testing.

As can be seen in TABLE VI, knowledge transfer to

unseen device types is possible if there are similarities in the

hardware configuration. Since the behaviors of RPi3 and RPi4s

are quite different (non-IID data), the knowledge transfer

to RPi3 is not possible and all samples are classified as

abnormal. In contrast, the performance on unseen RPi4s with

different RAM is generally high, again with the exceptions of

freeze and repeat behavior, which are not even detected when

including the respective attack in the federation. Comparing

the federated model to the centralized approach, there are
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TABLE VI: Accuracy of Scenario 2 Autoencoder Models and

Difference with a Centralized Approach (in Parentheses)

Behavior RPi3 (diff.) RPi4 1 (diff.) RPi4 2 (diff.) RPi4 3 (diff.)

normal 0% (0%) 98.0% (4.0%) 97.33% (4.0%) 99.3% (9.3%)
normal v2 0% (0%) 98.00% (2.7%) 99.3% (4.0%) 96.0% (2.7%)

delay 100% (0%) 100% (0%) 100% (0%) 100% (0%)
disorder 100% (0%) 100% (0%) 100% (0%) 100% (0%)
freeze 100% (0%) 4.7% (-2.7%) 0.7% (-6.0%) 0.7% (-4.7%)
hop 100% (0%) 100% (0%) 100% (0%) 100% (0%)
mimic 100% (0%) 100% (0%) 100% (0%) 100% (0%)
noise 100% (0%) 100% (0%) 100% (0%) 100% (0%)
repeat 100% (0%) 2.00% (-5.3%) 4.00% (-6.00%) 1.3% (-2.7%)
spoof 100% (0%) 100% (0%) 100% (0%) 100% (0%)

no major differences, performing the federated model slightly

better when detecting normal behavior.

3) Scenario 3: Federated Binary Classification with Bal-

anced Device Type: It analyzes the capabilities of a federated

binary classifier to transfer knowledge of known SSDF attacks

between the federation. In particular, this scenario creates a

federation of four participants per device type (12 in total)

with the same behavioral data (normal and under-attack) per

device type. More in detail, one participant per device type

holds only normal data while the other three hold normal and

delay, normal and freeze, and normal and noise, respectively.

Each participant holds 250 samples of each selected behavior

in its training set, 25 of each selected behavior in its validation

set, and 75 of each existing behavior (two normal and eight

attacks) in the test set. With this configuration and following

the previous pipeline, a federated MLP is trained and evalu-

ated. TABLE VII shows the detection accuracy of the federated

MLP model and the difference with the centralized approach.

As usual, RPi4 2 is only used during testing.

TABLE VII: Accuracy of Scenario 3 MLP Model and Differ-

ence with a Centralized Approach (in Parentheses)

Behavior RPi3 (diff.) RPi4 1 (diff.) RPi4 2 (diff.) RPi4 3 (diff.)

normal 100% (0%) 100% (0%) 100% (0%) 100% (0%)
normal v2 100% (4.0%) 100% (0%) 100% (0%) 100% (0%)

delay 100% (0%) 100% (2.7%) 100% (2.7%) 100% (0%)
disorder 93.33% (49.3%) 96.00% (17.3%) 98.7% (13.3%) 97.3% (22.7%)
freeze 0% (-6.7%) 6.67% (-4.67%) 5.33% (-3.33%) 5.33% (-4.67%)
hop 100% (0%) 100% (0%) 100% (0%) 100% (0%)
mimic 100% (0%) 100% (1.3%) 100% (5.3%) 100% (0%)
noise 100% (1.33%) 100% (0%) 100% (0%) 100% (0%)
repeat 2.7% (-2.7%) 4.0% (-2.6%) 5.3% (-2.3%) 13.33% (-0.5%)
spoof 100% (0%) 100% (0%) 100% (0%) 100% (0%)

As can be seen in TABLE VII, the federated MLP transfers

the attack knowledge quite well. It even improves the accuracy

of a centrally trained model for the disorder attack. For

behaviors other than disorder, no difference > 6% can be

observed between the federated and centralized approaches.

4) Scenario 4: Federated Binary Classification with New

Device type: The last scenario is a combination of Scenarios

2 and 3. It evaluates the capabilities of a federated binary

classifier to transfer attack knowledge from a federation to a

new device type affected by attacks modeled in the federation.

In particular, the scenario considers the same three federations

of eight participants as Scenario 2 (see TABLE V). In addition,

as in Scenario 3, each participant holds 250 and 25 samples

of selected behaviors for training and validation, respectively.

Finally, the participant of the third device type holds 75

samples of each behavior (two normal and eight attacks)

for testing. Following the pipeline previously explained, a

federated MLP model per federation (3 in total) is trained.

TABLE VIII shows the accuracy of the three federated MLP,

and their differences with the centralized versions (using the

same algorithms, data, and hyperparameters).

TABLE VIII: Accuracy of Scenario 4 MLP Models and

Difference with a Centralized Approach (in Parentheses)

Behavior RPi3 (diff.) RPi4 1 (diff.) RPi4 2 (diff.) RPi4 3 (diff.)

normal 100% (100%) 100% (1.3%) 100% (0%) 100% (4.00%)
normal v2 100% (100%) 100% (0%) 100% (0%) 100% (0%)

delay 0% (-100%) 100% (0%) 100% (0%) 100% (0%)
disorder 0% (-100%) 97.3% (0%) 100% (1.3%) 88.0% (-12.0%)
freeze 0% (-2.3%) 8.0% (-3.0%) 6.67% (-2.1%) 2.7% (-6.4%)
hop 1.33% (-98.7%) 100% (0%) 100% (0%) 98.7% (1.3%)
mimic 0% (-100%) 100% (0%) 100% (0%) 100% (0%)
noise 0% (-100%) 100% (0%) 100% (0%) 100% (0%)
repeat 1.3% (-4.7%) 4.0% (-2.3%) 9.3% (-2.0%) 5.3% (-4.7%)
spoof 0% (-100%) 100% (0%) 98.7% (-1.3%) 100% (0%)

The results of TABLE VIII are very similar to those of

Scenario 2. The transfer between RPi4s works well for most

behaviors, while the transfer between RPi4 to RPi3 does not

work at all (normal behavior of RPi3 is predicted as attack).

Hence, there is no real advantage of either approach for the

RPi3. Further, the model does not detect the behaviors freeze

and repeat as attack in all RPi4. For these behaviors, the

centralized model slightly outperforms the federated model.

Further, the federated model shows better performance (+12%)

for the disorder behavior on a RPi4 with 4GB of RAM.

V. ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

This section evaluates the robustness of the FL models

created in Scenario 1 and 3 (defined in Section IV) when they

are affected by malicious participants executing adversarial

attacks. In particular, an increasing number of adversaries

execute data and model poisoning attacks over a federated

anomaly detector (Scenario 1) and a binary classifier (Scenario

3) equipped with different aggregation functions.

In terms of adversarial attacks, the following are evaluated:

(i) behavior injections, as a variant of data poisoning, (ii)

model canceling, as a model poisoning attack, and (iii) random

weight upload, another model poisoning attack. More in detail,

behavior injection uses malicious data to train models. In the

case of anomaly detection, attack data is used as if it were

normal, while for classification, the labels of normal and attack

data are flipped during training. Model canceling tries to bring

all global model parameters to zero. For that, it uploads the

parameters of the last known global model multiplied by a

factor α that is determined according to the formula based on

the number of participants K and the number of adversaries

f : K − f + α · f = 0. Finally, random weight upload sends

random weights to the aggregation server. This work generates

the weights from a normal distribution with a mean of zero

and a standard deviation of three.

As secure aggregation functions, additionally to FedAvg,

the models consider (i) trimmed mean, which excludes the

highest and the lowest entries to calculate the mean of the

local models weights, (ii) trimmed mean 2 excluding the

two highest and lowest entries for the averaging, and (iii)

coordinate-wise median, which uses the median of every
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weight instead of the average. Random weight upload uploads

a random weight vector to the aggregation server. For the

corresponding experiments random weight adversaries have

been chosen to select their random weights using a normal

distribution with a mean of 0 and a standard deviation of 3.

Finally, to measure the impact of the attacks when evaluating

normal and under-attack behaviors, all behavioral data of

each participant are concatenated, and the F1-score metric is

calculated as F1−score = TP

TP+ 1

2
(FP+FN)

(TP:True Positive,

TN:True Negative, FP: False Positive, FN: False Negative)

A. Robustness of Scenario 1

The previous adversarial attacks and secure aggregation

functions are considered to measure the robustness of the

federated Autoencoder detecting anomalies in Scenario 1.
1) Attack Behavior Injection: In the federation of 12 par-

ticipants (four per device type), from zero to four participants

per device type (0% to 33% of the federation) are turned into

data poisoning adversaries. This adversary setup is repeated

three times, one per device type. Adversaries use attack

samples (instead of normal samples) to train the federated

Autoencoder. Each adversary injects different attack behaviors

into the training process. In particular, the first adversary

uses spoof behavior to train, the second mimic, the third

delay, and the fourth disorder. These attacks are selected

according to their median MSE in the corresponding federation

without adversaries, choosing the ones more dissimilar from

the normal behavior. Freeze and repeat behaviors are not

injected due to their similarity to normal behavior. The first

row of Fig. 5 shows for each device type, the F1-score

of the federated Autoencoder according to the implemented

aggregation function, and the number of adversaries belonging

to the RPi3. The second row shows the same but when the

adversaries belong to the RPi4 2GB family. Due to space

constraints and similarities with the RPi4 2GB family, it is

not shown when attackers belong to the RPi4 4GB type.

As can be seen in Fig. 5, for federated averaging, even

one adversary (8% of the federation) decreases the F1-score

of each device below 70%. Four adversaries (33%) destroy

the model performance. Furthermore, the injecting device

type matters and attacks performed by RPi4 1 have a more

significant impact on all different hardware configurations.

Comparing the aggregation functions, coordinate-wise median

performs best in general, achieving an F1-score above 60% for

all test sets up to two adversaries. Especially in the case of

adversarial RPi3, the aggregation function achieves excellent

robustness with F1-scores above 80% for up to 4 adversaries.
2) Model Canceling and Threshold Attack: In contrast

to the previous attack, the impact of model canceling does

not depend on the device type executing it. For this attack,

the federation remains as in Scenario 1, but with up to 6

adversaries affecting the model robustness. It means that the

number of participants varies from 12 (no adversaries) to 18

(with six malicious actors, 33%). It is important to note that

the model canceling attack is combined with an overstatement

of the threshold. In other words, besides selecting model

canceling weights, adversaries choose a threshold randomly

from the uniform distribution in the range [106, 109].

The third row of Fig. 5 reports the F1-score of each attack

configuration per aggregation function. The FedAvg aggrega-

tion is only capable of defending against one adversary. Most

importantly, the threshold overstatement can destroy the model

performance once one manipulated threshold is not filtered.

In this scenario, the coordinate-wise median provides a very

robust defense since the federation maintains very good per-

formance even with six adversaries. In conclusion, while the

mean is shifted heavily towards the attackers for the FedAvg

and trimmed mean aggregations, the median can be more

stable against largely different adversarial model weights.

However, in the case of ≥ 50% adversarial percentage, the

median would also lose effectiveness.

3) Random Uploads: The fourth row of Fig. 5 shows the

impact of the adversaries per aggregation function. Here, sim-

ilar results as in the model canceling attack can be observed.

Coordinate-wise median performs best, followed by trimmed

mean 2 and the basic trimmed mean. Nonetheless, in this

attack where adversaries produce random weights, it is not as

obvious as for model canceling how the aggregation function

can filter the exact weight values. Random weights can be in

a completely honest range for some layers or hidden units, but

they can also be extreme values for others. It depends on which

distribution the random values are sampled and whether they

are extreme values compared to the honest weights. However,

random weights have no significant impact on the median.

In conclusion, this scenario has shown how robust aggrega-

tion methods improve the model resilience against adversaries.

In all attacks, coordinate-wise median is the aggregation

method offering the best robustness. It maintains the model

performance almost unaltered in 3 of 4 adversarial attacks,

only decreasing (still better than the other aggregation meth-

ods) when RPi4 1 performs a data poisoning attack.

B. Robustness of Scenario 3

This section measures the robustness of the federated MLP

classifying normal and under-attack behaviors in Scenario 3.

1) Label Flipping: For this attack, the federation of 12

participants (four per device type and three device types)

contains from zero to four adversaries of a given device type.

This adversary setup is repeated three times, once per device

type. In each configuration, adversaries flip the labels of their

local data. In particular, the first adversary flips the labels of

normal behavior, the second flips normal and delay, the third

normal and freeze, and the fourth normal and noise.

The two first rows of Fig. 6 follow the same structure as

Fig. 5, but for label flipping attacks this time. As can be

seen, for FedAvg and regardless of the device type acting

maliciously (but especially for RPi3 acting as an adversary),

the attack does not have a big impact on the average model

performance. This is because certain attack characteristics are

already available in the federation. For example, if there are

two adversarial RPi4 1, the normal and freeze behavior labels

are flipped for this specific device type only. However, the

knowledge about these behaviors is fully present for the other

two device types. It explains the much higher F1-score than

in other attack scenarios. Apart from that, the trimmed mean
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Fig. 5: Impact of Different Adversarial Configurations on the Anomaly Detection Approach

function is the one providing more robustness for all devices.

In contrast, coordinate-wise median shows a different pattern

where the model performs poorly, especially for RPi3. It

can be appreciated how performance even improves with the

presence of some adversaries. However, once there are too

many label flipping adversaries, it seems to become a lottery

which participants weights are chosen for the update.

2) Model Canceling: This attack considers the same 12

participants of Scenario 3 and adds from zero to six adversaries

(0-33% of the federation). In contrast to the anomaly detection

experiment, the threshold cannot be attacked in this case.

The third row of Fig. 6 reports the results for zero to six

model canceling adversaries regardless of the device type

acting maliciously. As can be seen, while the performance

for trimmed mean excluding one extreme value is very similar

to FedAvg aggregation, the exclusion of two extreme values

(trimmed mean 2) helps to protect from one more adversary.

Still, the performance drops below 20% for three or more

adversaries. Coordinate-wise median performs better than the

other aggregation functions with four or more adversaries but

does not present a viable solution either. It might be explained

by the fact that filtering out RPi3 good weights by the median

as this device type represents a minority in the federation.

3) Random Uploads: It also considers Scenario 3, where

different adversaries (from zero to six) execute random weight

model uploads. The fourth row of Fig. 6 reports the F1-score
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Fig. 6: Impact of Different Adversarial Configurations on the Binary Classification Approach

of the federated MLP for different aggregation functions and

adversaries. As can be seen, the trimmed mean 2 function

provides the most robust results in general (and especially for

RPi4). Adversaries generating random weights do not neces-

sarily always produce wrong weights for the overall model.

Moreover, it looks like random adversarial weights cancel out

each other, which explains the instability. Indeed, the global

model becomes more random when more adversaries are

introduced. Therefore, federated averaging is highly unstable.

The second trimmed mean variant provides a better defense as

more adversaries can be filtered, being especially in favor of

the RPi4. Finally, coordinate-wise median does not perform

well for low numbers of adversaries but provides an effective

countermeasure for four or more malicious participants.

In conclusion, this scenario has shown that robust aggrega-

tion methods are not as effective as in the first scenario. Here,

there is not a clear aggregation method better than the others.

Trimmed mean is the one offering best results under label

flipping attacks, while trimmed mean 2 and coordinate-wise

median have the best results for model canceling and random

uploads attacks, but still with a significant performance loss

compared to no-attack situations.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This work evaluates the robustness of fingerprinting FL

models equipped with anti-adversarial mechanisms and able
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to detect cyberattacks affecting resource-constrained devices.

To achieve that goal, this work first creates and makes public

a FL-oriented dataset based on fingerprints of Raspberry Pis

utilized as spectrum sensors of ElectroSense. The dataset

contains samples from eight different SSDF attacks and from

two versions of normal behavior for a total of four phys-

ical sensors. After that, four federated scenarios based on

anomaly detection and binary classification are created to

evaluate and compare the detection performance of privacy-

preserving FL models and DL models where data privacy

is neglected. The main results of each scenario demonstrate

that FL achieves a detection performance that can compete

with centralized DL approaches without significant limitations.

Finally, this work analyzes the impact of different amounts

of malicious participants executing data and model poisoning

attacks against FL models equipped with different aggrega-

tion mechanisms (FederatedAveraging, trimmed mean, and

coordinate-wise median). The experiments conducted show

that both data poisoning and model poisoning severely affect

the federated performance for binary classification as well as

anomaly detection. However, Trimmed mean and coordinate-

wise median can help if adversaries are present up to a certain

percentage, but they cannot guarantee robustness, and their

applicability depends on the specific scenario considered.

As the main conclusion of this study, FL legitimates itself by

achieving competitive performance in scenarios where privacy

plays an important role, meaning that a centralized setup is

not possible. Due to its simplicity in training, the capability to

detect zero-day attacks, and possible robustness improvements,

anomaly detection appears to be the best solution for the

federated detection of data integrity attacks in a crowdsensing

platform. Regarding the robustness of FL models and the im-

pact of anti-adversarial mechanisms, the evaluated aggregation

functions provide different results depending on the scenario

and attack. Generally, the FedAvg is particularly vulnerable

to extreme values as they distort the selected global weight

average entirely. The trimmed mean aggregation may be able

to filter extreme values up to some extent, but if there are

sufficiently many adversaries, not all weight uploads can be

excluded. Further, there is the concern of excluding honest

participants weights despite adversaries only. Thus, the best

number of updates to exclude from the averaging is very

difficult to determine in trimmed mean. The coordinate-wise

median aggregation is most robust against extreme values but

can lead to unstable results in heterogeneous federations.

As future work, there is still room for further research

about robust aggregation mechanisms. In the case of anomaly

detection, domain-specific aggregation functions could be used

to filter adversaries more effectively by leveraging further

knowledge about common distributions and fingerprint pat-

terns of normal behavior. For instance, it could be utilized that

the threshold of an honest federation participant should be in

a certain range for a given device type. Lastly, a larger dataset

could greatly enhance the exploration of the FL use case. This

could allow to test more extensively how heterogeneity and

non-IID data influence federated model performance.
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