MOESM1 of Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke

Degang Song, Xiangjian Zhang, Junmin Chen, Xiaoxia Liu, Jing Xue, Lan Zhang, Xifa Lan
2019 Figshare  
Additional file 1. Supplementary result. TWS119 with the dose of 10 mg/kg was selected in animal experiment. TWS119 activated Wnt/β-catenin pathway by inhibiting GSK-3β. TWS119 improved histological damage in the late stage of stroke. Figure S1 TWS119 at the dose of 10 mg/kg was selected in animal experiment. a TWS119 with the dose of 5 mg/kg and TWS119 with the dose of 10 mg/kg upregulated the mRNA expression of β-catenin (n = 8 per group, * P < 0.05, ** P < 0.01). b Neurological functions
more » ... evaluated using Adhesive Removal test at day1, 7 and 14 after stroke. TWS119 with the dose of 10 mg/kg significantly improved neurological function at day 14 after stroke (n = 8 per group, TWS119 (10 mg/kg) vs Vehicle, # P < 0.01). Figure S2 TWS119 activated Wnt/β-catenin pathway by inhibiting GSK-3β and improved histological damage. a Western blot was used to determine the expression of β-catenin and GSK-3β 14 days after stroke. b and c TWS119-treated mice had a lower level of GSK-3β and a higher level β-catenin comparing to vehicle mice (n = 6 per group, * P < 0.05, ** P < 0.01). d Histological damage was assessed by quantification of the infarcted cortex cavitation using CWI. e TWS119 treatment increased the CWI in ischemic mice comparing to vehicle treatment 21 days after stroke (n = 8 per group, * P < 0.05). CWI, Cortical width index. CWI = 100% × W.lpsi / W.contra, W.lpsi means ipsilateral width, W.contra means contralateral width.
doi:10.6084/m9.figshare.11339204 fatcat:sci57an2hfgcffzs2tyr76hip4