Construction of self-adjoint Berezin–Toeplitz operators on Kähler manifolds and a probabilistic representation of the associated semigroups

Bernhard G. Bodmann
2003 Journal of Geometry and Physics  
We investigate a class of operators resulting from a quantization scheme attributed to Berezin. These so-called Berezin-Toeplitz operators are defined on a Hilbert space of square-integrable holomorphic sections in a line bundle over the classical phase space. As a first goal we develop self-adjointness criteria for Berezin-Toeplitz operators defined via quadratic forms. Then, following a concept of Daubechies and Klauder, the semigroups generated by these operators may under certain conditions
more » ... be represented in the form of Wiener-regularized path integrals. More explicitly, the integration is taken over Brownian-motion paths in phase space in the ultra-diffusive limit. All results are the consequence of a relation between Berezin-Toeplitz operators and Schrodinger operators defined via certain quadratic forms. The probabilistic representation is derived in conjunction with a version of the Feynman-Kac formula.
doi:10.1016/s0393-0440(02)00191-2 fatcat:jqbwi45cmjfrtgnc4n3qsimfei