SOLVING THE DEGREE CONSTRAINED MINIMUM SPANNING TREE PROBLEM USING TABU AND MODIFIED PENALTY SEARCH METHODS

Wamiliana Wamiliana
<span title="">2004</span> <i title="Petra Christian University"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ouqxlj3h3zdxzlpsmibq472zgu" style="color: black;">Jurnal Teknik Industri</a> </i> &nbsp;
In this paper we consider the Degree Constrained Minimum Spanning Tree Problem. This problem is concerned with finding, in a given edge weighted graph G (all weights are non-negative), the minimum weight spanning tree T satisfying specified degree restrictions on the vertices. This problem arises naturally in communication networks where the degree of a vertex represents the number of line interfaces available at a center. Because of its NP-completeness, a number of heuristics have been
more &raquo; ... . In this paper we propose two new search methods: one based on the method of Tabu search and the other based on a penalty function approach. For comparative analysis, we test our methods on some benchmark problems. The computational results support our methods.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://doaj.org/article/c8a5887ace154b67b93ccd56d22ada23">doaj:c8a5887ace154b67b93ccd56d22ada23</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5ucgsjsm6zhuno3uzu6zy7rgli">fatcat:5ucgsjsm6zhuno3uzu6zy7rgli</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200128070549/http://jurnalindustri.petra.ac.id:80/index.php/ind/article/download/16216/16208" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/6d/17/6d1775cbaec298d9ad69538df476fdc0a7169808.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>