T-CREST: Time-predictable multi-core architecture for embedded systems

Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber (+11 others)
2015 Journal of systems architecture  
Real-time systems need time-predictable platforms to allow static analysis of the worst-case execution time (WCET). Standard multi-core processors are optimized for the average case and are hardly analyzable. Within the T-CREST project we propose novel solutions for time-predictable multi-core architectures that are optimized for the WCET instead of the average-case execution time. The resulting timepredictable resources (processors, interconnect, memory arbiter, and memory controller) and
more » ... (compiler, WCET analysis) are designed to ease WCET analysis and to optimize WCET performance. Compared to other processors the WCET performance is outstanding. The T-CREST platform is evaluated with two industrial use cases. An application from the avionic domain demonstrates that tasks executing on different cores do not interfere with respect to their WCET. A signal processing application from the railway domain shows that the WCET can be reduced for computation-intensive tasks when distributing the tasks on several cores and using the networkon-chip for communication. With three cores the WCET is improved by a factor of 1.8 and with 15 cores by a factor of 5.7. The T-CREST project is the result of a collaborative research and development project executed by eight partners from academia and industry. The European Commission funded T-CREST.
doi:10.1016/j.sysarc.2015.04.002 fatcat:yts4coszkbg7vbes3b4hzdyzui