Employing Geochemical Analysis to Reveal Pedogenic Processes in Wisconsin Bisequal Soils Having Spodic and Alfic Sequa

Michael Aide, Christine Aide
2020 Journal of Geoscience and Environment Protection  
Bisequal soils in northern Wisconsin were described and characterized with the intent to determine if a near total elemental analysis protocol may estimate the effect of selected soil pedogenic pathways on soil morphology. The protocol reveals that gross elemental soil profile distributions do provide evidence that certain pedogenic processes are operating within a group of soils. Concentration differences between instrumental neutron activation analysis and an aqua regia digestion protocol
more » ... estion protocol infer that alkali metals, alkaline earth metals, transition metals and the rare earth elements are only incompletely weathered from primary minerals. Transition metals, alkali metals, alkaline earths, metalloids, and the rare earth elements all show inter-horizon mobility. Lessivage and the mobility of elements presumably adsorbed on soluble or suspended organic materials are the dominant soil processes influencing the soil profile redistribution of elements and the majority of these elements are shown to correlate with the soil profile distribution of Fe. Base cycling by the forest vegetation was shown to support A horizon enrichment of Ca, Sr, Ba, P, S, Mn, Zn, Sn and Pb. For clinical practice, elemental analysis may reveal important soil profile elemental differences when applied to variation of one soil forming factors, such as a chronosequence or toposequence within a landscape or soil association. Advantages and limitations of the protocol in identifying pedogenic pathways are discussed.
doi:10.4236/gep.2020.811001 fatcat:ja7c4omamzhwdbd3ee7qm2ec3a