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Abstract—This paper presents a novel approach to providing
a service for electric-vehicle (EV) battery charge replenishment.
This is an alternate system in which the charge replenishment is
provided by mobile chargers (MCs). These chargers could have
two possible configurations: a mobile plug-in charger (MP) or a
mobile battery-swapping station (MS). A queuing-based analytical
approach is used to determine the appropriate range of design pa-
rameters for such a mobile charging system. An analytical analysis
is first developed for an idealized system with a nearest-job-next
(NJN) service strategy explored for such a system. In a NJN
service strategy, the MC services the next spatially closest EV
when it is finished with its current request. An urban environment
approximated by Singapore is then analyzed through simulation.
Charging requests are simulated through a trip generation model
based on Singapore. In such a realistic environment, an updated
practical NJN service strategy is proposed. For an MP system in
an urban environment such as Singapore, there exists an optimal
battery capacity with a threshold battery charge rate. Similarly,
the battery swap capacity of an MS system does not need to be
large for the system to perform.

Index Terms—Battery charging, battery swapping, electric ve-
hicles (EVs), queuing theory, trip generation.

I. INTRODUCTION

ENERGY security is one of the biggest issues in the
global political climate. Instability in global oil producing

nations and the dwindling of relatively easily extractable oil
reserves have driven the need for major energy importing
nations to be less reliant on foreign sources of energy. The
transportation sector, which accounts for the majority of oil
consumption around the world, is one such sector that has seen
a major impetus to transform. To help alleviate this dependence
on limited resources, there have been tremendous development
in electricity-propulsion-based vehicles. These include the pure
electric vehicles (EVs), such as Nissan Leaf, Think City, and
Tesla Roadster, and the hybrid plug-in hybrid EVs (PHEV),
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such as the GM Volt. The most significant difference between
these two configurations of EVs is the ability of the PHEV to
fall back on an alternative power source when its battery is
depleted. In most configurations, the alternative power source
is an internal combustion (IC) engine. An EV, by comparison,
is reliant solely on the energy available in its battery for
propulsion and, when the energy is depleted, it has to replenish
its energy through a variety of options. Most of these options
require a significant amount of time to execute, during which
the vehicle is rendered immobile; hence, it creates a significant
barrier to adoption among consumers known as range anxiety.

There are several options available that can recharge the EV
and PHEV, and the most prevalent technologies can broadly be
classified under two broad arms: plug-in chargers and battery
swaps. Plug-in chargers can further be classified into three lev-
els: levels 1, 2, and 3. A level-1 charger represents a charger that
is typically installed into a household plug. The power output of
these chargers vary across the world depending on the prevalent
voltage and current levels of the socket installed and, in the
United States, the charger will typically deliver about 1.6 kW
of power. Level-2 chargers can deliver at higher power levels,
typically more than twice that of a level-1 charger. These charg-
ers are expected to be the most common of chargers available to
EVs as they require minimal capital investment and installation.
However, with these specifications, an EV could take about 8 h
to fully charge its battery; hence, they are useful mainly for the
recharging of EVs for instances where the vehicle is expected
to be stationary for a significant amount of time.

Level-3 chargers, or quick chargers as they are also known,
are high-voltage dc chargers that can deliver electricity at a
high power and thus can potentially reduce charging times to
about half an hour. These chargers are expensive and require
the appropriate electricity distribution infrastructure to support
them. However, since they substantially reduce charging times,
they do help to alleviate range anxiety. The last popular option
in literature is the concept of battery swapping. In these stations,
depleted battery packs of EVs are swapped out for charged
battery packs in specialized stations, which allows for service
times that are competitive with gas stations for IC vehicles. A
major player in the domain of battery swapping was Better
Place with relatively large battery-swapping station installa-
tions in Denmark and Israel [1]. However, a battery-swapping
station costs around $500 000, representing a significant capital
investment for EV companies [2]. This has severely hampered
the success and deployment of swapping technology. Tesla has
also announced plans for swapping stations for its own line of
EVs [3]. Another possible alternative to these energy replen-
ishment technologies could be wireless chargers such as the
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EV Project, which proposes for the installation of charging lines
laid under roads [4]. Similar to the high-voltage chargers, these
require extensive infrastructure investments.

These limitations in battery capacity and recharge time rep-
resent significant barriers to the adoption of EVs by consumers
[5]. While there are solutions that can help alleviate these
concerns, level-3 chargers and battery swap stations represent
big investment decisions by the firms or government authorities.
These could require a certain level of EV penetration before
becoming financially viable.

In this paper, we are proposing a mobile charging platform as
an alternative implementation of these battery recharge options.
This option could initially be an interim measure to fulfill
energy demand before infrastructure investment catches up or
complement existing services to cover deficient coverage. The
implementation could either be in the form of a mobile plug-
in charger (MP) or a mobile battery-swapping station (MS).
To evaluate the feasibility of the envisioned mobile charging
service, we propose a queue-based framework to analytically
capture the mobile charging process and use an example where
a single mobile charger (MC) is employed to demonstrate its
value. We then examine the implementation of such a system in
an urban environment through a scenario based on the city-state
of Singapore.

II. BACKGOUND

The library of work of EVs is increasing rapidly. Most have
been focused on operational aspects assuming a certain level of
EV adoption. A large body of work has looked at the impact
of EVs on the electricity system, specifically on how EVs
would affect the temporal usage pattern of electricity. One of
the earlier and more influential studies examines the potential
adoption limit of EVs in current electricity grids and concluded
that, if we could fill in the valleys of off-peak periods with
EV charging, the current system could absorb a high level of
these vehicles [6]. Other studies have looked at more realistic
charging patterns, simulating how actual usage would affect the
electricity system [7]–[11].

Adoption rate studies, mostly based on agent-based simu-
lation diffusion models, have looked at the effects of these
vehicles at different penetration rates. In [12], Yabe et al. looked
at different adoption rates and, coupled with how the electricity
generation sector develops, determined the effects of CO2

emissions for Japan. There needs to be a long-term incentive
policy in order for EVs/PHEVs to achieve significant levels
of penetration. Eppstein et al. [13] develop an agent-based
framework that incorporates demographic and spatial consid-
erations to investigate complex interactions that affect PHEV
adoption rates. Their analyses suggest that the all-electric range
of PHEVs was a significant factor in making PHEVs more
cost competitive.

All of these studies assume that the EVs do most of their
charging at home and overnight. However, in practical imple-
mentations, public charging options would need to be provided
to help alleviate concerns of range anxiety among EV owners
[14], [15].

A. Fixed Charging Stations

The predominant paradigm in EV energy replenishment is
a static-location charging station. This system requires that
the EVs drive to a predefined location where they can replen-
ish their energy sources. The key considerations then include
charging location sites and, correspondingly, how many stations
to construct. Shukla et al. adopted a vehicle flow-interception
model and looked at the optimal number of battery-swapping
stations considering existing petrol station retrofits, specifically
looking at a case study in Alexandria, USA [16]. Wang and
Lin have also looked at the siting of a mixed composition
of charging stations to achieve objectives of both minimal
costs and maximal coverage, using a case study of Penghu in
Taiwan [17].

Studies that look at the operational aspects of fixed charging
stations have also started to appear in literature. Avci et al.
have looked at the operational characteristics and parameters
of a single charging station [18], and Andrews et al. concluded
that a mixed ownership model for EV batteries with additional
charging infrastructure is conducive for EV adoption [19].
However, a recent study concluded that investments in public
fast chargers for EVs are hardly profitable at low EV adoption
rates [20].

B. Mobile Service Systems

Mobile rescue systems possess certain similar properties to
mobile charging systems. These systems are also concerned
about the minimization of response times and key indicators
such as latencies and miss rates. However, a key differentiating
factor is the service capacity of the server. In rescue services
such as an ambulance, the service capacity per vehicle is
fixed. Instead, the design parameters used to influence the key
parameters are usually the location of ambulance bases and
coverage areas [21]–[24].

In contrast, the energy capacity of the MC is a key design
parameter in the system. A large energy capacity allows for
the MC to stay out of the depot for a longer period and hence
affect service rates. Moreover, the rate of service is generally
determined by the requestor and not affected by the design
of the server. The rate of service of the server can be more
easily determined in a mobile charging system through different
charging rates. Both these factors, i.e., capacity and charging
rate, also significantly affect the capital cost of such a system.

There has been previous work that has determined the fea-
sibility and accuracy of queue-based models of mobile servers
[25]–[30]. These studies focus on the analysis of data collection
in wireless sensor networks with mobile data collectors. The
most basic service discipline of first-come–first-serve (FCFS) is
explored in [25]–[27], and the condition for a stable system has
been identified [29]. Furthermore, the nearest-job-next (NJN)
discipline is explored in [28], [30] and is shown to be able to
achieve much more competitive performance. It is clear that
the MCs in our EV domain can be viewed as a special type
of mobile servers; hence, we can adopt a similar queue-based
approach to analytically capture the mobile charging process
for EVs.
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III. METHODOLOGY

A. Overview

In this paper, an MC is proposed as a possible complemen-
tary alternative for public charging services. This charger may
take either of two forms: an MP or an MS. In its first form, the
MP acts like a conventional fixed plug-in charger with the abil-
ity to travel to the EV requesting for a charge. A possible sce-
nario could be as follows: An EV drives to work, and realizing
that it needs to make an additional trip, determines that it needs
additional charging when it is parked at work. The workplace
may not have a public charging station installed; hence, the
MC can fulfill the need. The MC drives to where the EV is
parked, starts charging the vehicle to a predetermined charge
level, and leaves to fulfill its next request. In this capacity, the
charger could also fulfill the role as the primary charger for the
vehicle if the EV does not have access to a charging station
at its residence. This is possible, particularly for high-density
urban environments where the parking space for the residence
is not owned by the EV owner and the owner may not have the
access to install a charger at home. In the second MS derivative,
it is assumed that the underlying assumptions dictating MC use
are similar; however, the MS in this configuration swaps the
depleted battery of the EV with a fully charged battery. In this
scenario, the EV faces a constant and probably short turnaround
time. Throughout this paper, MC refers to an MC in general,
whereas MP and MS refer to specific configurations of this
charger.

The MC system is approximated by a queuing model. The
requests for MCs are generated through a stochastic trip gener-
ation model that assumes a vehicle use profile similar to con-
ventional vehicles. These requests are then used in the queuing
model, allowing us to examine critical design parameters that
would govern the feasibility of the mobile charging system. The
system operations in an urban environment such as Singapore
are then examined to better illustrate the system implications.
The approach and methods of the study can be applied to most
urban environments.

In the following, we will first examine the queuing model
framework used to analyze the operational performance of the
chargers for an idealized system, followed by discussion of the
scenario development for our case study. We will then present a
study of the MC system in the urban environment, followed by
a concluding section.

B. Queue-Based Analytical Framework

Here, we first present our queue-based analytical framework;
this would be used to establish analytical reference points for
the performance of the proposed system.

1) General Framework: The general charging process is
easily translatable to queuing models, where the MC acts as
the server and the requesting EVs are treated as the clients.
The event of an EV requesting a charge is modeled as the
client arrival. To charge an EV, the MC needs to drive to its
parking location and replenish its energy supply. This process
is modeled as a service process of the queuing model. Once
the EV is finished charging, the event is treated as a client
departure. Fig. 1 presents an overview of the queuing model.

Fig. 1. Overview of the queuing model.

Based on this framework, there are several submodules that
need to be specified to determine a representative model. Once
specified, the model can allow us to analytically evaluate the
resultant operation metrics. In this paper, we base our analysis
on a single MC servicing multiple EV requests for energy
replenishment.

• Client Arrival Process: This module describes the arrival
process of the EVs’ charging requests at the service
provider. For example, a common practice is to assume the
charging requests arrive according to a Poisson process,
i.e., the interarrival time of requests is exponentially dis-
tributed. In this paper, we define the arrival of EV charging
requests at the service provider as a Poisson process with
intensity. This assumption not only allows for analysis of
the system based on the queuing model but also matches
reality in many cases. This is due to the following two
reasons. First, in a mobile charging scenario, we expect the
total number of EVs in the service coverage area, e.g., the
city where the service is provided, to be relatively large,
and the probability for a given EV to request charging
at a specific time instance is relatively low. Second, the
utilization of individual EVs is normally independent to
each other, which indicates their charging requests are sent
to the service provider independently. Hence, if the pool of
potential clients is large and the probability for individual
clients to arrive is low and independent, we can assume a
Poisson process to capture the clients’ arrival [31].

• Service Discipline: This module determines the order by
which requesting EVs will be served. In this context, it
would refer to the next EV to charge. The disciplines can
include: FCFS (select EVs according to the order of their
charge request times), NJN (select the EV that is spa-
tially closest to the current location of the MC), earliest-
deadline-first (select the EV whose charging process has
to be accomplished the earliest), etc.

From previous work [28] and in a later section, we
show that an NJN discipline gives competitive overall
performance for the MC system. Hence, we will define
our basic system as a single MC employed to carry out the
charging process with the NJN discipline. This means that
when the MC finishes the charge replenishment task of the
current EV, it selects the requesting EV that is spatially
closest to its current location as the next to charge. The
advantage of NJN is that it greedily minimizes the driving
distance for the MC to reach the target EV and thus
reduces the time required to accomplish that charging task.

• Client Departure: This module describes how the charging
of requesting EVs is carried out. Two factors determine the
departure process: the service time of individual clients
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(EVs) and the number of servers (MCs). The former
consists of two parts: the driving time the MC takes to
reach the parking location of the target EV, and then the
charging time to replenish the energy supply of the EV.

The driving time is determined by the distance between the
current location of the MC and that of the target EV and the
driving speed of the MC, which is assumed constant. Note
that the MCs location upon the accomplishment of the current
charging task then becomes the parking location of a requesting
EV (the one whose charging has been just accomplished). The
distance between random locations is a well-studied problem in
geometric probability, and results on the distribution of the dis-
tances in different area shapes exist. Without loss of generality,
we assume a unit square area in this example, in which case the
probability distribution of the distance d between two random
locations conforms to

fD(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2d(π − 4d+d2), d ∈ [0, 1]

2d
[
2 sin−1

(
1
d

)
−2 sin−1

√
1− 1

d2

+ 4
√
d2−1−d2−2

]
, d ∈ (1,

√
2]

0, otherwise
(1)

and fD(d) = F ′
D(d).

We then consider the case that l requests are waiting to be
served when the MC just accomplishes the charging of the
current EV (or a new request is just received by the MC). We
can approximately treat the distances from the l requesting EVs
to the MC as l independent and identically distributed (i.i.d.)
random variables conforming to (1). Finding the smallest one of
l i.i.d. variables is a first-order statistic. Hence, the distribution
of the shortest distance to these l EVs can be calculated by

FD(d, l) = 1 − (1 − FD(d))l . (2)

With a constant speed, we can derive the driving time distri-
bution as

FT (t, l) = FD(vt, l)
(

0 ≤ t ≤
√

2/v
)
. (3)

In this basic case, we assume that the EV user will request
for a charging service when the remaining energy level of
their EVs falls below a threshold; thus, we simplify our in-
vestigation in this formulation by assuming a homogeneous
constant charging time Tc for all requesting EVs. Note that
this homogeneous constant charging time is not required in
the queue-based framework, which can be built based on the
convolution theorem with any charging time distributions. With
a given driving and charging time, and based on the fact that
these two time periods are independent to each other, we can
derive the service time distribution (i.e., the distribution of the
time for the MC to accomplish a charging task) by

fsl(t) = fs′
l
(t− Tc)(Tc ≤ t ≤ Tc +

√
2/v). (4)

Now that we have finished the construction of the queuing
model for our example scenario, we can analytically evaluate
performance measures such as the latency of service of the
mobile charging process. The detailed steps for these analyses

Fig. 2. Service time distribution with respect to charge request rate.

Fig. 3. Response time distribution with respect to charge request rate.

follow a classical queue analysis approach, which is detailed
for a similar system in another publication [28] and will not
be presented here. Figs. 2 and 3 below show service time dis-
tribution and response time distribution with respect to charge
request rates.

One immediate observation from Fig. 2 is that service times
are reduced with a larger λ, i.e., a higher rate of charge service
request. This is due to the greedy nature of NJN when selecting
the next to-be-charged EV: A larger λ indicates a heavier load
for the MC, resulting in more pending to-be-charged EVs. As
a result, it is more likely for the charger to find an EV that is
spatially closer as the next target, as shown in (2), reducing the
driving time to reach the target.

In Fig. 3, we can see that a larger λ significantly increases
the response time of the MC, particularly for the worst cases.
The response time distribution with a λ of 0.0002 demonstrates
much more obvious long-tail properties when compared with
the case when λ = 0.00005. The significantly increased re-
sponse time indicates that multiple MCs are needed to maintain
performance metrics, defined in a later section, of the mobile
charging process.

In this paper, this analytical analysis provides a theoretical
reference for the performance metrics. In order to further an-
alyze the mobile charging system, a simulation model needs
to be developed that allows for more realistic and operating
parameters to be examined.

C. Simulation Model

In the analytical model presented in the earlier section, the
model makes several assumptions that allow for an analytical
solution to be obtained. However, in practical implementations,
these assumptions are not always valid. In order to examine
these implementations, we build a simulation that allows for
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Fig. 4. Service time distribution with λ = 0.0002.

Fig. 5. Response time distribution with λ = 0.0002.

more varied and realistic assumptions to be examined. The
analytical solutions obtained prior would serve as theoretical
references for the performances for these systems.

1) Basic Simulation Model and Validation: We build the
MC simulation in MATLAB. In this model, we assume a system
with only one MC that moves around a predetermined service
area to fulfill charging requests by EVs. As a first validation
step, we build a model that incorporates the ideal assumptions
of the analytical model following the NJN service discipline.
We define a square service area of 100 km2. The MC driving
speed is assumed a constant 10 km/h. The charging requests
arrive at random time instances at random locations, following
a Poisson process with intensity λ. The battery charge capacity
of the EVs is assumed as 54 kWh with a charger charging rate
of 10 kW. An amount of 5-kW energy has to be charged to each
requesting EV. A total number of 1000 charging requests are
generated and served during the simulation.

2) Service Time and Response Time Distribution: We verify
the results of the simulation against analytical results that were
obtained in the earlier section. Figs. 4 and 5 show analytical
results compared with simulation results for both service time
and response time, respectively. Both figures show the simula-
tion results that track well with analytical findings.

D. Urban Environment Analysis

Here, we will consider the implementation of the mobile
charging system in an urban environment. As an illustrative
scenario, we use the city-state of Singapore as a case study.

1) Mobile Charger Model: One significant difference of the
analytical model from a realistic urban environment scenario is
the energy replenishment rate of the MC. In the earlier section,
we assumed a constant charging rate for all requests. However,

this assumption does not hold in a realistic scenario particularly
when the MC can be of difference characteristics.

• Charger Characteristics: The MC system proposed in this
paper can take two different forms. The first resembles
a more conventional EV charger that plugs into the EV
and transfers energy from the onboard battery to the EV
battery. The second takes the form of a mobile battery
swap station, which may require a technician to manually
replace a depleted battery from the EV with a fully charged
battery from the MC. They have slightly different operat-
ing characteristics and limitations.

In the first MP form, the charger carries around a large
capacity battery bank that depletes as a whole throughout
its operation. When the battery capacity is depleted and the
MP is unable to continue its operation, the MP returns to a
central depot to swap out its battery bank for a charged
bank. In our assumptions, the central depot is assumed
located in the center of the service area. For this paper,
it is also assumed that the chemistry of these batteries are
similar to the batteries found in EVs; however, in actual
implementation schemes, the batteries can be chosen from
all available technologies.

In the second MS permutation, the MS serves as a
transport of individual battery packs that can be swapped
in for depleted cells in EVs. However, since the battery
packs that are swapped out would have varying degrees
of charge left in them, they cannot be reused as battery
recharge packs for other vehicles. Since the MS would
have a limited carrying capacity, they can only serve a
fixed number of vehicles before having to return to the
central depot to swap out the depleted battery packs.

• Specifications: As a first iteration, we assume a conven-
tional van as the vehicle type for the model of an MC. It is
assumed that the vehicle is retrofitted to carry the equipment
needed for performing its energy replenishment duties.
Typically, these vehicles have a payload of about 1000 kg.
A good example of such a vehicle is the Ford Transit. This
represents a carrying limit to the amount of batteries that
these vehicles can carry. In this paper, we assume a battery
pack with similar chemistries to current EVs; a charge
density of 7 kg/kWh for Lithium-ion batteries is assumed
[25]. This charge density restricts the upper allowable limit
of an MC to be up to 140 kWh. Another factor that could
be a constraint for the MC is the operational range of
the MC. As a first design assumption, we assume that
the MC uses a conventional IC engine with an average of
20 mi/gal, giving an operational range of about 170 km.

• Trip Generation: The city-state of Singapore is used as a
representative case study for analysis on the feasibility of
such a system in urban environments. As a general case,
we look at the feasibility of EVs in replacing a conven-
tional vehicle used as the main mode of transportation
daily for work commute. The EV is used as the primary
mode of transport to work, with occasional uses for com-
muting to lunch and other destinations during the day. We
assume a conventional work profile where the EV is used
to commute to work in the morning and is back at the re-
sidence at night.
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Fig. 6. Diurnal flow of trip generation model for vehicles.

We modified a trip generation framework used in a previous
study [7] to generate a series of possible EV usage profiles
and feed them into a mobile charging model to determine
operational parameters for the MC. In this discrete-event-based
model, it is assumed that there are four possible locations
or states that an EV can be in. Home defines the initial and
final state of an EV during a day. Work defines the primary
destination of the EV during the day. Lunch represents a state
where the EV is used to commute to a location for a meal during
the day, and out would represent all other trips not represented
by the other states. These trips could be off-site work-related
trips, after work trips, or trips for leisure activities. Fig. 6 shows
a general flow of this model.

The EV starts a work day at home. In this state, the EV deter-
mines the departure time and return time for the day from asso-
ciated temporal distributions shown in Fig. 6. These temporal
distributions have been inferred from the associated Electronic
Road Prices (ERPs) on major expressways in Singapore [32].
These prices are analogous to road conditions in Singapore and
represent the flow of traffic during peak commute hours for
work-related activities [33], [34].

Once the EV is at work, there are three possible states that
the EV can transition to, home, lunch, and out. The transition to
home is governed by the predetermined return time determined
at the start of the day; when the predetermined time is reached,
the EV transitions to the home state. Lunch and out states
have different temporal probability density functions that are
also given in Fig. 6. Unlike the transition to work, the EV is
not required to transition to these states. The determination
of these transitions is similar to the model framework for
appliance usage given in previous works [8], [35]. The temporal
probability density functions are obtained from a combination
of using ERPs [32], [34] and assumed profiles [7]. A previous
study [7], provided basic temporal functions that are associated
with the city of Indianapolis. These usage characteristics are
different from a dense urban environment such as Singapore;
hence, the temporal patterns are modified through the matching
of peak timings determined through the ERPs of Singapore.

The distribution of travel distances to work is also an-
other important input that affects the amount of electricity
that is needed for a recharge. To approximate these distances,
we assume that the distribution of EVs around Singapore is

Fig. 7. Trip distribution for vehicles traveling to work.

TABLE I
CHARACTERISTICS OF NISSAN LEAF WITH 24-kWh BATTERY

proportional to the population densities of residential estates
around Singapore. If it is determined that the distributions are
not uniform in the urban area examined, these districts could
be examined in isolation, similar to the approach taken in a
previous study [7].

Population density numbers are obtained from census statis-
tics obtained from the Department of Statistics of Singapore
[36]. The average travel distance from these residential districts
to the central business district are calculated and then assigned
to these districts. The distribution of assumed travel distances
can then be determined and is given in Fig. 7. A trapezoidal
distribution is then fitted to the data to allow for ease of
simulation and analysis. The probability density function for
the trapezoidal distribution is given by

⎧⎨
⎩

(x− 2)/(9 × 22), x ∈ [2, 11)
1/22, x ∈ [11, 27)
(30 − x)/(3 × 22), x ∈ [27, 30).

(5)

2) System Parameters: The parameters for the EV used in
this paper are based on the Nissan Leaf, the best-selling EV
currently [37]. The range of an EV varies significantly accord-
ing to the driving conditions on the roads. The dominant factors
are traffic conditions and weather conditions. Traffic conditions
determine how fast the car is driven and how often starts and
stops are made. Weather conditions predominantly affect the
energy demand for air conditioning in the vehicle. Nissan has
established certain expected ranges based on these parameters,
and based on these estimates, the expected range for an EV in
Singapore can range from 47 to 70 mi [38]. Based on these
two bounds, we construct a triangle distribution with a mean of
58.5 mi for the estimation of the energy consumed per mile
assuming a linear relationship between battery capacity and EV
range. The associated bounds are also shown in Table I.

The representative scenario in this paper is based on the city-
state of Singapore with the rate tariff of electricity being a
flat-rate electricity tariff. The most recent residential electricity
tariff rate of $0.026 per kilowatthour is used as the electricity
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rate faced by the MC [39]. As this rate is constant throughout
the day, this removes the complexity of scheduling recharge
schedules of the battery packs of the MC. Incorporating a time-
varying electricity tariff poses other design considerations that
is not discussed in this paper but could be examined in detail in
a separate study.

3) Service Discipline Adjustments: In the following, we
adjust the ideal NJN discipline with a few practical
considerations.

• MC Charge Replenishment: In the previous analytical ex-
ample, we implicitly assume that the energy supply of the
MC is high enough for completion of all charging requests
under consideration. This assumption is obviously not
practical under realistic scenarios. In actual operations, the
energy supply is constrained by the battery capacity of the
MC, which in turn is constrained by the carrying capacity
and cost of the MC. Hence, it is critical to consider the
decision factors of when the MC returns to the service
depot for energy replenishment. We define a simple modi-
fication for the service discipline and name it as practical-
NJN. In such a scheme, the MC returns to its service
depot whenever it detects that its remaining energy level
is not enough to accomplish the next charging task for
the EVs. Once the MC replenishes its energy supply, the
MC then selects a new energy replenishment task based on
its current location through NJN. Similarly, practical im-
plementations of other service disciplines also follow the
same adjustment.

• Idle Time Utilization: Another special case to consider
is that, upon the accomplishment of the current charging
task, if there is no pending vehicle to be charged, should
the MC stay at its current location or should it try to return
to the service depot? In this paper, the default location of
the MC is assumed the service depot, and the MC would
always return to it when idle. This is because: 1) the ser-
vice depot is assumed at the center of the service area and
hence the MC expected distance to the next job requests
would be shortest at that location; and 2) the MC can
replenish its own energy supply during this idle period.

IV. RESULTS AND DISCUSSION

Here, we present a case study of MCs in an urban environ-
ment approximated by Singapore. The driving traces produced
in Section III-D are used in the service simulation model
detailed in Section III-C. The service depot where the power
supply of the chargers can be replenished is assumed in the
center of the service area. The arrival rate of the charge requests
for this section is fixed at λ = 0.0001. Here, we look at two
critical design specification for the MC, i.e., the battery capacity
and the charging rate; this could serve as a design guide for the
eventual implementation of such a system.

A. Operational Metrics

In the design of a mobile charging system, there are certain
parameters that need to be determined that will greatly affect
the performance of the system in general. We look at the system

Fig. 8. Average latency with MP capacity.

design through two metrics that represent how well this system
is operating. The first metric that we consider is the miss ratio
rmiss, which considers the number of requests that do not finish
by the required charge finish time of the EV. Specifically, we
denote N as the total number of requests served during the
mobile charging process, and N as the number of requests that
fail to be completed before their respective required finish time.
rmiss is calculated as

rmiss = N ′/N. (6)

The second metric is the response time that the system
requires to finish each request, which is defined as the time
taken from when the EV sends out its charge request to the time
the request is completed, i.e., the charging latency of charge
requests. We evaluate the design parameters and compare
between three different service disciplines: a practical FCFS
strategy, a practical NJN strategy, and a pure NJN strategy (with
assumptions used in the analytical base case).

B. MP System

1) MP Battery Capacity: The battery capacity determines
the number of EV recharge requests that the MP can service
before it needs to return to the central depot to replenish its
energy supply. There is also the added consideration that the
energy density of batteries is relatively lower than fossil fuels;
hence, there is a practical upper bound that can be loaded
onto mobile charging systems. As a result, there is a need to
determine the impact of varying battery storage capacity on an
MP. The figures in the following show the effect of increasing
battery capacity on the performance metrics.

We can see that the practical NJN discipline significantly
outperforms both the pure NJN and another intuitive strategy
FCFS. More importantly, it is shown in Fig. 8 that, although
increasing the battery capacity from 20 to 40 kWh can reduce
the average charging latency, further increment of the MP
capacity from 40 to 100 kWh does not significantly reduce
the charging latency. This nonintuitive observation becomes
even more obvious from the corresponding miss ratio, which
increases noticeably when the charger capacity increases from
40 to 100 kWh, as shown in Fig. 9.

This is due to the fact that the service depot is located
in the center of the service area. This position results in the
shortest average distance to all charge request locations within
the service area. Hence, when the MP returns to the center for
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Fig. 9. Miss ratio with MP capacity.

Fig. 10. Average latency with MP charging rate.

energy replenishment, it can usually find a charge request that
is near to its current location. However, when its capacity is
too small, i.e., 20 kWh in the simulation, the MP is forced
to return to the depot too often, and this reduces the system
performance. Conversely, a capacity that is too big would
reduce the return of the MP to the center of the service area and
reduce the performance of system. These observations point to
an optimal MP battery capacity that is around 40 kWh for an
urban environment based on Singapore and would differ for
different systems. This observation is of significant practical
value since it indicates that installing a high capacity and thus
costly battery in an MC may not be necessary for a mobile
charging service.

2) MP Charging Rate: The other important factor for an MP
is the rate at which it can recharge the EV battery. We assume
that the range of charging rates that the MP can operate at is
similar to the range of rates that level-2 chargers can operate at.
The typical charging rate for a level-2 charger is around 6.6 kW;
however, level-2 chargers are rated up to handle up to 80 A at
240 V, allowing for charge rates over 10 kW [34]. Recently, the
standards for dc chargers have been released, allowing level-1
dc chargers to support 36 kW and up to 90 kW for level-2
chargers [40]. Similar to the discussion in the earlier section,
this charging rate is also an important design parameter that
governs how well the MP system can operate.

Figs. 10 and 11 show the effect of increasing battery charging
rate on the performance metrics, given for charging rates of
5–30 kW. It can be seen from the figures that, by increasing the
battery charging rate of the MP, the performance metrics im-
prove. It can be seen that the marginal benefit of increasing the
charging rate for the MP decreases past a critical value. While
there is a significant gain in performance from increasing the

Fig. 11. Miss ratio with MP charging rate.

Fig. 12. Travel distance with charger capacity.

rage from 5 to 15 kW, any increase in recharge rate beyond that
does not significantly increase the performance of the system.

3) Systems Costs With Respect to Design Parameters: The
major costs associated with an MC system can be broken into
two categories: capital costs and operating costs. The two major
capital items are the cost of the vehicle and the cost of the
battery pack. The major operating costs would include the
fuel consumed by the MC and the electricity costs needed to
recharge the depleted batteries. The purchase cost of the vehicle
would be the same across all design parameters, whereas we
can assume that the electricity costs are approximately constant
across the scenarios considered.

Therefore, the consideration then is to determine if the fuel
costs change across the design parameters. Fig. 12 shows the
travel distance of an MC against its battery pack capacity, and
it can be seen that the travel distance remains approximately
constant across the battery capacities modeled. Hence, the most
significant factor affecting the cost of the MC is the battery
capital cost. Taken in context with results from Section IV-B1,
the battery capacity should be sized according to the quality of
service that is needed and, from the results, should not be sized
with too much redundancy.

4) Cost Effectiveness of an MP System: From the analysis
conducted throughout this paper, it would be interesting to
determine the costs that would be associated with each charge
fulfillment request of the MP. In order to do so, we do a ten-
year net present value (NPV) analysis and determine the real
price that each request would need to be charged in order for
the system to have a zero NPV, i.e., a breakeven price. In such
a scenario, we assume that the EVs would request for the MP
service on an on-demand basis and the MP would charge the
EV on a per-request served basis.
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Fig. 13. Parameter settings for cost analysis.

Fig. 14. Breakeven cost per charged request with regard to the battery cost
and the total number of served requests.

For consistency, all dollar values in analysis are in 2014 U.S.
dollars, and the parameters that are considered in this analysis
are shown in Fig. 13.

We consider an operational battery capacity of 40 kWh as
obtained from the earlier section. It is further assumed that the
dominant variable cost in this system is the battery capacity;
hence, the cost of configuring the battery system for various
charge rates is constant. For NPVs, we consider a discount rate
of the system of 6% and assume that the real price of gasoline
increases at 3% per annum, whereas electricity prices would
remain constant in real terms. These parameters are similar to
values considered in a prior study [7].

Since the battery cost is dominant, we examine the required
prices against different values of unit battery capacities. We also
look at the system across different numbers of served charge
requests per unit charger per day. Intuitively, a lower per unit
cost of battery would result in a lower per charge price. More-
over, the higher the number of charge fulfillment, the lower
per unit cost.

Fig. 14 shows a combined plot of the per unit charge price
when compared with battery unit costs and charge request ful-
fillment. At the lowest end of the spectrum, when per unit bat-
tery costs are $300/kWh with a charge fulfillment of 14 requests
per day, the MP needs to charge at least $3.66 per request to
breakeven at a 6% real discount rate.

If we consider an EV that may require 20 charges a month,
which translates to a monthly spend of about $73.20, this would
be comparable to a monthly spend by conventional IC vehicles.
A more realistic ball park would be in the region of SGD180,
which translates to about $144; this is the current subscription
fee for the Singapore EV Test Bed [41]. At this price point, this
could correspond to a wide spectrum of design choice options,
one of which would be a battery unit cost of $550/kWh fulfilling
an average of seven requests per charger per day.

5) Consolidated Plots for an MP System: The availability
of two parameters allows for an optimal combination of the

Fig. 15. Average latency with respect to MP battery capacity and charging rate.

Fig. 16. Miss ratio with respect to MP battery capacity and charging rate.

two parameters for the MP system. Figs. 15 and 16 represent
3-D plots for the performance metrics against both MP battery
capacity and charging rate. In an urban environment approxi-
mated by Singapore, depending on acceptable service quality
levels, a possible optimal combination of the design parameters
could be a battery capacity of around 40 kWh and a charging
rate within a range of 15 kW to 30 kW.

6) MS System: An alternative configuration to the above
MP system is the MS model. In this paper, this system is
modeled as a mobile charging system with a fixed charging
time, which represents the amount of time needed to do a full
swap of battery packs of the EV. The whole battery pack of
the EV is assumed switched out regardless of the amount of
charge left in the battery. The MS is also assumed limited to
a maximum number of swaps per trip out of the central depot.
The central design parameters of this particular design can then
be considered the time needed for the battery swap to occur
and the number of battery packs that it carries. Figs. 17 and
18 present their impact on the mobile swapping process with a
request arrival rate of 0.0002, examining a battery swap time of
10–40 min with swap capacities of one to five swaps.

The first observation is that a faster swapping time improves
the performance in terms of both the average latency and the
miss ratio, which is intuitive. As a frame of reference, current
automated systems can do battery swaps that are comparable
to filling a tank of gasoline [3]. Another important observation
is that a large number of battery packs cannot really improve
the performance metrics, particularly when the swapping time
is short. This is again due to the centrally located service depot.
With a small number of available battery packs, the MS needs to
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Fig. 17. Average latency with respect to MS swapping time and battery swap
capacity.

Fig. 18. Miss ratio with respect to MS swapping time and battery swap
capacity.

return to the service center relatively frequently, which in turn
reduces the service time (and thus the charging latency) of each
requesting EV.

C. Study Limitations

There are several considerations between the alternative of
an MP system versus a MS system. One of the more practical
considerations would be the adoption rate of each alternative
among EVs. Currently, the dominant paradigm is that of a plug-
in charger for EVs. Battery-swapping support among current
generation EVs is much lower, although support for swapping
stations could increase [3]. There could be a design possibility
for a hybrid mobile charging system that can support both
paradigms, but this will not be examined in this paper.

Another consideration could be the costs involved in main-
taining an inventory of charged batteries in the central service
depot. The amount of battery packs that need to be maintained
at the depot could be significantly different between the two
configurations. This would require a more detailed examination
that could encompass more dynamic electricity prices with
different battery stock charging strategies.

In this paper, it is assumed that the MCs are able to carry
out the requests for EV energy replenishment at any location
that is required by the EV. Practically, this may not be feasible
as there could be parking or space restrictions, particularly
within the business districts. However, there could be avenues
for operators to negotiate deals with the major parking operators
in the areas that are serviced by the chargers. The exact imple-
mentation of these details will not be discussed in this paper.

Another factor that is not examined in this paper is the
penetration rate of EVs in the service area. In essence, this is
tied to the charging request rate λ of the EVs. A higher EV
penetration can be directly correlated to a higher charge request
rate. The analysis presented earlier assume a fixed request rate
that then ties to an associated performance level that can be
decided from the design parameters. A similar study can also
be performed for different request rates with other factors being
kept constant. Since that analysis will be largely similar to the
results presented in this paper, the analysis is not presented here.

This paper proposes alternative solutions to EV battery en-
ergy replenishment. Although the technologies for such sys-
tems do exist, the adoption of such systems onto mobile
platforms will be a significant engineering challenge. As such,
the specific implementations of such systems will not be exam-
ined in this paper, but it is hoped that the analysis presented here
could help influence design decisions for these systems.

V. CONCLUSION

This paper has present a novel approach to providing a ser-
vice for EV battery charge replenishment. Instead of a system of
fixed charging stations scattered around a service area, this pa-
per has proposed an alternate system where the charge replen-
ishment is provided by MCs. These chargers could have two
possible configurations: an MP charger or an MS. A queuing-
based analytical approach is used to determine the appropriate
range of design parameters for such a mobile charging system.
An analytical analysis is first developed for an idealized system.
An NJN service strategy is explored for such a mobile charging
system. In such a system, the charging requests from EVs
are modeled through a Poisson distribution and are spatially
distributed equally through the service area. In an NJN service
strategy, the MC services the next spatially closest EV when
it is finished with its current request. An urban environment
approximated by Singapore is then analyzed through simula-
tion. Charging requests are simulated through a trip generation
model based on Singapore. In a realistic environment, an up-
dated practical NJN service strategy is proposed. Depending on
service quality preferences, for an MP MC system in an urban
environment such as Singapore, there exists an optimal battery
capacity with a threshold battery charge rate. Similarly, the
battery swap capacity of a MS system does not need to be large
for the system to perform. Although the exact specifications
of implementation are not detailed in this paper, the approach
detailed in this paper allows for certain design parameters
to be examined carefully and used as reference points for a
future system.
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