A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="https://www.nature.com/articles/s41467-020-15728-5.pdf?error=cookies_not_supported&code=b03f3ec1-4c06-4337-9939-e1fd4d03e878">the original URL</a>. The file type is <code>application/pdf</code>.
Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab
<span title="2020-04-27">2020</span>
<i title="Springer Science and Business Media LLC">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/a4wan6l5o5dfzn767kyz7jqevi" style="color: black;">Nature Communications</a>
</i>
We constructed an intelligent cloud lab that integrates lab automation with cloud servers and artificial intelligence (AI) to detect chirality in perovskites. Driven by the materials acceleration operating system in cloud (MAOSIC) platform, on-demand experimental design by remote users was enabled in this cloud lab. By employing artificial intelligence of things (AIoT) technology, synthesis, characterization, and parameter optimization can be autonomously achieved. Through the remote
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/s41467-020-15728-5">doi:10.1038/s41467-020-15728-5</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/32341340">pmid:32341340</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/w5pthmaflfc5re2cc2cgwrhkli">fatcat:w5pthmaflfc5re2cc2cgwrhkli</a>
</span>
more »
... on of researchers, optically active inorganic perovskite nanocrystals (IPNCs) were first synthesized with temperature-dependent circular dichroism (CD) and inversion control. The inter-structure (structural patterns) and intra-structure (screw dislocations) dual-pattern-induced mechanisms detected by MAOSIC were comprehensively investigated, and offline theoretical analysis revealed the thermodynamic mechanism inside the materials. This self-driving cloud lab enables efficient and reliable collaborations across the world, reduces the setup costs of in-house facilities, combines offline theoretic analysis, and is practical for accelerating the speed of material discovery.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201108011627/https://www.nature.com/articles/s41467-020-15728-5.pdf?error=cookies_not_supported&code=b03f3ec1-4c06-4337-9939-e1fd4d03e878" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/f1/09/f109542ad86b8acc27f15c530ac1ddb9bbbb6688.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/s41467-020-15728-5">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
nature.com
</button>
</a>