Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes

Clemens Wittenbecher, Kristin Mühlenbruch, Janine Kröger, Simone Jacobs, Olga Kuxhaus, Anna Floegel, Andreas Fritsche, Tobias Pischon, Cornelia Prehn, Jerzy Adamski, Hans-Georg Joost, Heiner Boeing (+1 others)
2015 American Journal of Clinical Nutrition  
Habitual red meat consumption was consistently related to a higher risk of type 2 diabetes in observational studies. Potentially underlying mechanisms are unclear. Objective: This study aimed to identify blood metabolites that possibly relate red meat consumption to the occurrence of type 2 diabetes. Design: Analyses were conducted in the prospective European Prospective Investigation into Cancer and Nutrition-Potsdam cohort (n = 27,548), applying a nested case-cohort design (n = 2681,
more » ... 688 incident diabetes cases). Habitual diet was assessed with validated semiquantitative food-frequency questionnaires. Total red meat consumption was defined as energy-standardized summed intake of unprocessed and processed red meats. Concentrations of 14 amino acids, 17 acylcarnitines, 81 glycerophospholipids, 14 sphingomyelins, and ferritin were determined in serum samples from baseline. These biomarkers were considered potential mediators of the relation between total red meat consumption and diabetes risk in Cox models. The proportion of diabetes risk explainable by biomarker adjustment was estimated in a bootstrapping procedure with 1000 replicates. Results: After adjustment for age, sex, lifestyle, diet, and body mass index, total red meat consumption was directly related to diabetes risk [HR for 2 SD (11 g/MJ): 1.26; 95% CI: 1.01, 1.57]. Six biomarkers (ferritin, glycine, diacyl phosphatidylcholines 36:4 and 38:4, lysophosphatidylcholine 17:0, and hydroxy-sphingomyelin 14:1) were associated with red meat consumption and diabetes risk. The red meat-associated diabetes risk was significantly (P , 0.001) attenuated after simultaneous adjustment for these biomarkers [biomarkeradjusted HR for 2 SD (11 g/MJ): 1.09; 95% CI: 0.86, 1.38]. The proportion of diabetes risk explainable by respective biomarkers was 69% (IQR: 49%, 106%). Conclusion: In our study, high ferritin, low glycine, and altered hepatic-derived lipid concentrations in the circulation were associated with total red meat consumption and, independent of red meat, with diabetes risk. The red meat-associated diabetes risk was largely attenuated after adjustment for selected biomarkers, which is consistent with the presumed mediation hypothesis.
doi:10.3945/ajcn.114.099150 pmid:25948672 fatcat:pbplpv7tnjejrcup672n7grj4e