A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
OOD-MAML: Meta-Learning for Few-Shot Out-of-Distribution Detection and Classification
2020
Neural Information Processing Systems
We propose a few-shot learning method for detecting out-of-distribution (OOD) samples from classes that are unseen during training while classifying samples from seen classes using only a few labeled examples. For detecting unseen classes while generalizing to new samples of known classes, we synthesize fake samples, i.e., OOD samples, but that resemble in-distribution samples, and use them along with real samples. Our approach is based on an extension of model-agnostic meta learning (MAML) and
dblp:conf/nips/JeongK20
fatcat:ucvjymvnorab3m5xvlm7pw4hru