Resilience in the Surgical Scheduling to Support Adaptive Scheduling System

Lisa Wiyartanti, Choon Hak Lim, Myon Woong Park, Jae Kwan Kim, Gyu Hyun Kwon, Laehyun Kim
2020 International Journal of Environmental Research and Public Health  
Operating Room (OR) managers frequently encounter uncertainties related to real-time scheduling, especially on the day of surgery. It is necessary to enable earlier identification of uncertainties occurring in the perioperative environment. This study aims to propose a framework for resilient surgical scheduling by identifying uncertainty factors affecting the real-time surgical scheduling through a mixed-methods study. We collected the pre- and post-surgical scheduling data for twenty days and
more » ... a one-day observation data in a top-tier general university hospital in South Korea. Data were compared and analyzed for any changes related to the dimensions of uncertainty. The observations in situ of surgical scheduling were performed to confirm our findings from the quantitative data. Analysis was divided into two phases of fundamental uncertainties categorization (conceptual, technical and personal) and uncertainties leveling for effective decision-making strategies. Pre- and post-surgical scheduling data analysis showed that unconfirmed patient medical conditions and emergency cases are the main causes of frequent same-day surgery schedule changes, with derived factors that affect the scheduling pattern (time of surgery, overtime surgery, surgical procedure changes and surgery duration). The observation revealed how the OR manager controlled the unexpected events to prevent overtime surgeries. In conclusion, integrating resilience approach to identifying uncertainties and managing event changes can minimize potential risks that may compromise the surgical personnel and patients' safety, thereby promoting higher resilience in the current system. Furthermore, this strategy may improve coordination among personnel and increase surgical scheduling efficiency.
doi:10.3390/ijerph17103511 pmid:32443414 fatcat:itkqcnzoivfx5fetlmmuecidry