WSGAN: An Improved Generative Adversarial Network for Remote Sensing Image Road Network Extraction by Weakly Supervised Processing

Anna Hu, Siqiong Chen, Liang Wu, Zhong Xie, Qinjun Qiu, Yongyang Xu
2021 Remote Sensing  
Road networks play an important role in navigation and city planning. However, current methods mainly adopt the supervised strategy that needs paired remote sensing images and segmentation images. These data requirements are difficult to achieve. The pair segmentation images are not easy to prepare. Thus, to alleviate the burden of acquiring large quantities of training images, this study designed an improved generative adversarial network to extract road networks through a weakly supervised
more » ... cess named WSGAN. The proposed method is divided into two steps: generating the mapping image and post-processing the binary image. During the generation of the mapping image, unlike other road extraction methods, this method overcomes the limitations of manually annotated segmentation images and uses mapping images that can be easily obtained from public data sets. The residual network block and Wasserstein generative adversarial network with gradient penalty loss were used in the mapping network to improve the retention of high-frequency information. In the binary image post-processing, this study used the dilation and erosion method to remove salt-and-pepper noise and obtain more accurate results. By comparing the generated road network results, the Intersection over Union scores reached 0.84, the detection accuracy of this method reached 97.83%, the precision reached 92.00%, and the recall rate reached 91.67%. The experiments used a public dataset from Google Earth screenshots. Benefiting from the powerful prediction ability of GAN, the experiments show that the proposed method performs well at extracting road networks from remote sensing images, even if the roads are covered by the shadows of buildings or trees.
doi:10.3390/rs13132506 fatcat:dicf6ahhdrfcvgbtn4ma26q4tu