A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Predicting Defective Lines Using a Model-Agnostic Technique
2020
IEEE Transactions on Software Engineering
Defect prediction models are proposed to help a team prioritize source code areas files that need Software Quality Assurance (SQA) based on the likelihood of having defects. However, developers may waste their unnecessary effort on the whole file while only a small fraction of its source code lines are defective. Indeed, we find that as little as 1%-3% of lines of a file are defective. Hence, in this work, we propose a novel framework (called LINE-DP) to identify defective lines using a
doi:10.1109/tse.2020.3023177
fatcat:vnkikgjuxbea7c2xahtmyrkogy