Deep Learning Models for Predicting Epileptic Seizures Using iEEG Signals

Omaima Ouichka, Amira Echtioui, Habib Hamam
2022 Electronics  
Epilepsy is a chronic neurological disease characterized by a large electrical explosion that is excessive and uncontrolled, as defined by the world health organization. It is an anomaly that affects people of all ages. An electroencephalogram (EEG) of the brain activity is a widely known method designed as a reference dedicated to study epileptic seizures and to record the changes in brain electrical activity. Therefore, the prediction and early detection of epilepsy is necessary to provide
more » ... ely preventive interventions that allow patients to be relieved from the harmful consequences of epileptic seizures. Despite decades of research, the prediction of these seizures with accuracy remains an unresolved problem. In this article, we have proposed five deep learning models on intracranial electroencephalogram (iEEG) datasets with the aim of automatically predicting epileptic seizures. The proposed models are based on the Convolutional Neural Network (CNN) model, the fusion of the two CNNs (2-CNN), the fusion of the three CNNs (3-CNN), the fusion of the four CNNs (4-CNN), and transfer learning with ResNet50. The experimental results show that our proposed methods based on 3-CNN and 4-CNN gave the best values. They both achieve an accuracy value of 95%. Finally, our proposed methods are compared with previous studies, which confirm that seizure prediction performance was significantly improved.
doi:10.3390/electronics11040605 fatcat:5ifjemjpf5dddfbosodlqrp7ju