Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis

Roberta Ferrucci, Maurizio Vergari, Filippo Cogiamanian, Tommaso Bocci, Matteo Ciocca, Emanuele Tomasini, Milena De Riz, Elio Scarpini, Alberto Priori
2014 NeuroRehabilitation (Reading, MA)  
BACKGROUND: The debilitating fatigue that patients with multiple sclerosis (MS) commonly experience during day-to-day living activities responds poorly to current therapeutic options. Direct currents (DC) delivered through the scalp (transcranial DC stimulation or tDCS) at weak intensities induce changes in motor cortical excitability that persist for almost an hour after current offset and depend on current polarity. tDCS successfully modulates cortical excitability in various clinical
more » ... s but no information is available for MS related fatigue. OBJECTIVE: In this study we aimed to assess fatigue symptom after five consecutive sessions of anodal tDCS applied over the motor cortex in patients with MS. METHODS: We enrolled 25 patients with MS all of whom experienced fatigue. We delivered anodal and sham tDCS in random order in two separate experimental sessions at least 1 month apart. The stimulating current was delivered for 15 minutes once a day for 5 consecutive days. In each session the Fatigue Impact Scale (FIS) and the Back Depression Inventory (BDI) were administered before the treatment (baseline), immediately after treatment on day five (T1), one week (T2) and three weeks (T3) after the last tDCS session. RESULTS: All patients tolerated tDCS well without adverse events. The fatigue score significantly decreased after anodal tDCS in 65% of the patients (responders). After patients received tDCS for 5 days their FIS scores improved by about 30% and the tDCS-induced benefits persisted at T2 and T3. CONCLUSION: Our preliminary findings suggest that anodal tDCS applied over the motor cortex, could improve fatigue in most patients with MS.
doi:10.3233/nre-131019 fatcat:3govqtb6ojgrroymrgfszwdhfa