Cognitive Privacy Middleware for Deep Learning Mashup in Environmental IoT

Ahmed M. Elmisery, Mirela Sertovic, Brij B. Gupta
2018 IEEE Access  
Data mashup is a Web technology that combines information from multiple sources into a single Web application. Mashup applications support new services, such as environmental monitoring. The different organizations utilize data mashup services to merge data sets from the different Internet of Multimedia Things (IoMT) context-based services in order to leverage the performance of their data analytics. However, mashup, different data sets from multiple sources, is a privacy hazard as it might
more » ... al citizens specific behaviors in different regions. In this paper, we present our efforts to build a cognitive-based middleware for private data mashup (CMPM) to serve a centralized environmental monitoring service. The proposed middleware is equipped with concealment mechanisms to preserve the privacy of the merged data sets from multiple IoMT networks involved in the mashup application. In addition, we presented an IoT-enabled data mashup service, where the multimedia data are collected from the various IoMT platforms, and then fed into an environmental deep learning service in order to detect interesting patterns in hazardous areas. The viable features within each region were extracted using a multiresolution wavelet transform, and then fed into a discriminative classifier to extract various patterns. We also provide a scenario for IoMT-enabled data mashup service and experimentation results. INDEX TERMS IoT networks, cloud computing, environmental monitoring, smart cities, big data mashup, multimedia data.
doi:10.1109/access.2017.2787422 fatcat:k4peagmk4fc2vnl2wyl6hcy5ua