COOT: Cooperative Hierarchical Transformer for Video-Text Representation Learning [article]

Simon Ging
2020 arXiv   pre-print
Many real-world video-text tasks involve different levels of granularity, such as frames and words, clip and sentences or videos and paragraphs, each with distinct semantics. In this paper, we propose a Cooperative hierarchical Transformer (COOT) to leverage this hierarchy information and model the interactions between different levels of granularity and different modalities. The method consists of three major components: an attention-aware feature aggregation layer, which leverages the local
more » ... mporal context (intra-level, e.g., within a clip), a contextual transformer to learn the interactions between low-level and high-level semantics (inter-level, e.g. clip-video, sentence-paragraph), and a cross-modal cycle-consistency loss to connect video and text. The resulting method compares favorably to the state of the art on several benchmarks while having few parameters. All code is available open-source at
arXiv:2011.00597v1 fatcat:r3uogsn6kzexji2durtcotubly