A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Privacy-Preserving Bandits
[article]
2020
arXiv
pre-print
Contextual bandit algorithms (CBAs) often rely on personal data to provide recommendations. Centralized CBA agents utilize potentially sensitive data from recent interactions to provide personalization to end-users. Keeping the sensitive data locally, by running a local agent on the user's device, protects the user's privacy, however, the agent requires longer to produce useful recommendations, as it does not leverage feedback from other users. This paper proposes a technique we call
arXiv:1909.04421v4
fatcat:ynffzmb3czc33dxlkncocevyja