Quantum computation, non-demolition measurements, and reflective control in living systems

Abir U. Igamberdiev
2004 Biosystems (Amsterdam. Print)  
Internal computation underlies robust non-equilibrium living process. The smallest details of living systems are molecular devices that realize non-demolition quantum measurements. These smaller devices form larger devices (macromolecular complexes), up to living body. The quantum device possesses its own potential internal quantum state (IQS), which is maintained for a prolonged time via reflective error-correction. Decoherence-free IQS can exhibit itself by a creative generation of iteration
more » ... imits in the real world. It resembles the properties of a quasi-particle, which interacts with the surround, applying decoherence commands to it. In this framework, enzymes are molecular automata of the extremal quantum computer, the set of which maintains highly ordered robust coherent state, and genome represents a concatenation of error-correcting codes into a single reflective set. The biological evolution can be viewed as a functional evolution of measurement constraints in which limits of iteration are established, possessing criteria of perfection and having selective values.
doi:10.1016/j.biosystems.2004.04.001 pmid:15527945 fatcat:4wzpon3cdjel7ntaxlrqzpe2ye