Quantile and histogram estimation

E.J. Chen, W.D. Kelton
Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304)  
This paper discusses implementation of a sequential procedure to construct proportional half-width confidence intervals for a simulation estimator of the steady-state quantiles and histograms of a stochastic process. Our quasiindependent (QI) procedure increases the simulation run length progressively until a certain number of essentially independent and identically distributed samples are obtained. We compute sample quantiles at certain grid points and use Lagrange interpolation to estimate
more » ... p quantile. It is known that order statistics quantile estimator is asymptotically unbiased when the output sequences satisfy certain conditions. Even though the proposed sequential procedure is a heuristic procedure, it does have strong basis. Our empirical results show that the procedure gives quantile estimates and histograms that satisfy a pre-specified precision requirement. An experimental performance evaluation demonstrates the validity of using the QI procedure to estimate the quantiles and histograms.
doi:10.1109/wsc.2001.977322 dblp:conf/wsc/ChenK01 fatcat:bcslo4pwtzds7m7tkpkr4btdtu