A Cost-Effective CNN-LSTM-Based Solution for Predicting Faulty Remote Water Meter Reading Devices in AMI Systems

Jaeseung Lee, Woojin Choi, Jibum Kim
<span title="2021-09-17">2021</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/taedaf6aozg7vitz5dpgkojane" style="color: black;">Sensors</a> </i> &nbsp;
Automatic meter infrastructure (AMI) systems using remote metering are being widely used to utilize water resources efficiently and minimize non-revenue water. We propose a convolutional neural network-long short-term memory network (CNN-LSTM)-based solution that can predict faulty remote water meter reading (RWMR) devices by analyzing approximately 2,850,000 AMI data collected from 2762 customers over 360 days in a small-sized city in South Korea. The AMI data used in this study is a
more &raquo; ... g, highly unbalanced real-world dataset with limited features. First, we perform extensive preprocessing steps and extract meaningful features for handling this challenging dataset with limited features. Next, we select important features that have a higher influence on the classifier using a recursive feature elimination method. Finally, we apply the CNN-LSTM model for predicting faulty RWMR devices. We also propose an efficient training method for ML models to learn the unbalanced real-world AMI dataset. A cost-effective threshold for evaluating the performance of ML models is proposed by considering the mispredictions of ML models as well as the cost. Our experimental results show that an F-measure of 0.82 and MCC of 0.83 are obtained when the CNN-LSTM model is used for prediction.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s21186229">doi:10.3390/s21186229</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/34577436">pmid:34577436</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC8469262/">pmcid:PMC8469262</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/nbymmkktt5hrffaqtlhml6fqi4">fatcat:nbymmkktt5hrffaqtlhml6fqi4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210930140453/https://mdpi-res.com/d_attachment/sensors/sensors-21-06229/article_deploy/sensors-21-06229.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ea/4a/ea4ab466185132b3a697a24963bf7db3b2b24abf.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s21186229"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469262" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>