A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Active Learning for Constrained Document Clustering with Uncertainty Region
2020
Complexity
Constrained clustering is intended to improve accuracy and personalization based on the constraints expressed by an Oracle. In this paper, a new constrained clustering algorithm is proposed and some of the informative data pairs are selected during an iterative process. Then, they are presented to the Oracle and their relation is answered with "Must-link (ML) or Cannot-link (CL)." In each iteration, first, the support vector machine (SVM) is utilized based on the label produced by the current
doi:10.1155/2020/3207306
fatcat:mqu4gurpgna4xix4wpl4op7jzm