The Purification and Biochemical Characterization of a Weissella cibaria F1 Derived β-Mannanase for Its Use in the Preparation of Konjac Oligo-Glucomannan with Immunomodulatory Properties

Shuo Wang, Hairui Ji, Renpeng Du, Wenxiang Ping, Jingping Ge, Dan Zhao
2022 Fermentation  
Mannanase with a molecular weight of 33.1 kDa was purified from Weissella cibaria F1. The F1 mannanase contained 289 amino acid residues and shared 70.0% similarity with mannanase from Bacillus subtilis (P55278 (MANB_BACIU)). The optimum reaction conditions of F1 mannanase were 50 °C and pH 6.5. After incubation at pH 4.5–8.0 and 30–60 °C for 2 h, the enzyme activity remained above 60%. The effects of metal ions on mannanase enzyme activity were measured, and Mn2+, Mg2+, and Cu2+ increased
more » ... e activity. The Km (16.96 ± 0.01 μmol·mL−1) and Vmax (1119.05 ± 0.14 μmol·min−1) values showed that the enzyme exhibited high affinity for locust bean gum. Mannanase was used to hydrolyze konjac glucomannan to produce konjac oligo-glucomannan (KOGM). KOGM increased the proliferation and phagocytosis of RAW264.7 macrophages and enhanced nitric oxide, and cytokine production in macrophages, which showed potent immunostimulatory activity. In this study, the advantages of mannanase derived from lactic acid bacteria were utilized to expand the application of KOGM in the medical field, which is helpful to explore the broad prospects of KOGM in functional food or medicine.
doi:10.3390/fermentation8090468 fatcat:hnzzez63dvg6zf42hbkb5bmbxu