A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Computational error bounds for a differential linear variational inequality
2011
IMA Journal of Numerical Analysis
The differential linear variational inequality consists of a system of n ordinary differential equations (ODEs) and a parametric linear variational inequality as the constraint. The right-hand side function in the ODEs is not differentiable and cannot be evaluated exactly. Existing numerical methods provide only approximate solutions. In this paper we present a reliable error bound for an approximate solution x h (t) delivered by the time-stepping method, which takes all discretization and
doi:10.1093/imanum/drr009
fatcat:gpk3bdgz7ve3bdz4n2bssjb2yu