A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
New Research on Transfer Learning Model of Named Entity Recognition
2019
Journal of Physics, Conference Series
This paper integrates the current Google's most powerful NLP transfer learning model BERT with the traditional state-of-the-art BiLSTM-CRF model to solve the problem of named entity recognition. A bi-directional LSTM model can consider an effectively infinite amount of context on both sides of a word and eliminates the problem of limited context that applies to any feed-forward models. Google's model applied a feedforward neural network, causing its performance to weaken. We seek to solve these
doi:10.1088/1742-6596/1267/1/012017
fatcat:p46ct6xxijakfhwp73ovsfw36u