Sars-Cov-2 Spike 1 protein control Natural killer cells activation via HLA-E/NKG2A pathway [post]

Daria Bortolotti, Valentina Gentili, Sabrina Rizzo, Antonella Rotola, Roberta Rizzo
2020 unpublished
Natural killer (NK) cells are important in the control of viral infections. However, the role of NK cells during Sars-Cov-2 infection has previously not been identified. Peripheral blood NK cells from Sars-Cov and Sars-Cov-2 naïve subjects were evaluated for their activation, degranulation, interferon-gamma expression in the presence of Sars-Cov and Sars-Cov-2 spike proteins. K562 and lung epithelial cells were transfected with spike proteins and co-cultured with NK cells. The analysis was
more » ... rmed by flow cytometry and immune-fluorescence. Sars-Cov and Sars-Cov-2 spike proteins did not alter NK cell activation in K562 in vitro model. On the contrary, Sars-Cov-2 spike 1 protein (SP1) intracellular expression by lung epithelial cells resulted in NK cell reduced degranulation. Further experiments revealed a concomitant induction of HLA-E expression on the surface of lung epithelial cells and the recognition of a SP1-derived HLA-E-binding peptide. Simultaneously, there was the up-modulation of the inhibitory receptor NKG2A/CD94 on NK cells when SP1 is expressed in lung epithelial cells. We ruled out GATA3 transcription factor as responsible for HLA-E increased levels and HLA-E/NKG2A interaction as implicate in NK cells exhaustion. We show for the first time that NK cells are affected by SP1 expression in lung epithelial cells via HLA-E/NKG2A interaction. The resulting NK cells exhaustion might contribute to immunopathogenesis in Sars-Cov-2 infection.
doi:10.21203/rs.3.rs-31860/v1 fatcat:jpn7cajf4vcaxjxla4blmu7sjq