ESFR-SMART core burnup calculation on radially infinite lattice with Monte-Carlo code

Gabriel Tomic, Jiri Krepel
2019 Zenodo  
Purpose of the European Sodium Fast Reactor Safety Measures Assessment and Research Tools (ESFR-SMART) program is investigation of ESFR safety parameters like sodium void coefficient, and Doppler coefficient. To investigate these safety parameters over more cycles, one must use a detailed axial burnup profile of the fuel. The objective of this work is to develop a procedure which will be used for calculating the safety parameters over several cycles. Burnup calculations can be performed with
more » ... h deterministic and Monte Carlo codes. However, deterministic codes have less accurate cross section statistics compared to Monte Carlo codes, whereas Monte Carlo codes require extensive computing power. To circumvent the undesired traits of Monte Carlo and deterministic codes, radially infinite core was modeled in Serpent 2. Building block of the infinite lattice consists of six fuel assemblies (batches) at different burnup stages that are representative of the core inner region. Batch burnup procedure (BBP) was adopted and developed to prepare input files for Serpent 2 burnup simulations over 6 cycles. Data of axial burnup profiles in space and time are presented and it was concluded that the BBP is suitable for investigation of safety parameters like sodium void coefficient.
doi:10.5281/zenodo.3324564 fatcat:wwnmqm2wmbgjzcoqohwe3k37ja