Carbon Footprint and the Management of Supply Chains: Insights From Simple Models

Saif Benjaafar, Yanzhi Li, Mark Daskin
2013 IEEE Transactions on Automation Science and Engineering  
Using relatively simple and widely used models, we illustrate how carbon emission concerns could be integrated into operational decision-making with regard to procurement, production, and inventory management. We show how, by associating carbon emission parameters with various decision variables, traditional models can be modified to support decision-making that accounts for both cost and carbon footprint. We examine how the values of these parameters as well as the parameters of regulatory
more » ... sion control policies affect cost and emissions. We use the models to study the extent to which carbon reduction requirements can be addressed by operational adjustments, as an alternative (or a supplement) to costly investments in carbon-reducing technologies. We also use the models to investigate the impact of collaboration among firms within the same supply chain on their costs and carbon emissions and study the incentives firms might have in seeking such cooperation. We provide a series of insights that highlight the impact of operational decisions on carbon emissions and the importance of operational models in evaluating the impact of different regulatory policies and in assessing the benefits of investments in more carbon efficient technologies. Note to Practitioners-Firms worldwide, responding to the threat of government legislation or to concerns raised by their own consumers or shareholders, are undertaking initiatives to reduce their carbon footprint. It is the conventional thinking that such initiatives will require either capital investments or a switch to more expensive sources of energy or input material. In this paper, we show that firms could effectively reduce their carbon emissions without significantly increasing their costs by making only operational adjustments and by collaborating with other members of their supply chain. We describe optimization models that can be used by firms to support operational decision making and supply chain collaboration, while taking into account carbon emissions. We analyze the effect of different emission regulations, including strict emission caps, taxes on emissions, cap-and-offset, and cap-and-trade, on supply chain management decisions. In particular, we show that the presence of emission regulation can significantly increase the value of supply chain collaboration. Index Terms-Carbon emissions, carbon footprint, climate control, environmental policy, operations models, supply chain collaboration and coordination.
doi:10.1109/tase.2012.2203304 fatcat:th23vm26a5e2dfymtyrqp4smbm