Expression of the Spermatid-Specific Hsp70 Antigen is Conserved in Mammals Including Marsupials

Naoki Tsunekawa, Takao Nishida, Hirokazu Fujimoto
1999 Journal of Veterinary Medical Science  
The anatomical location of testes in mammals ranges from a location close to that observed in the embryo to a lower position usually involving a pendant scrotum. In scrotal mammals, the abdominal position of the cryptorchid testis, which elevates its temperature, is detrimental to spermatogenesis and causes infertility. Spermatocytes are sensitive but late spermatids are relatively resistant to thermal stress suggesting that the latter might be protected in some way. In general, most organisms
more » ... xpress Hsp70 proteins, which play a crucial role in the protection of cells against thermal stress. We have found previously that the Hsc70t protein, a member of the Hsp70 family of proteins, is constitutively expressed in the late spermatids of mice. Here, we have utilized immunohistochemistry with anti-mouse Hsc70t antiserum to examine the expression of the spermatid-specific Hsp70 antigen in the testes of several mammalian species with different degrees of testes migration. Our data indicate that the antigen is conserved in the mammals including marsupials. We also examined whether antigens of Hsp70-related proteins were expressed in non-mammalian vertebrates including not only homoiothermal but also poikilothermal animals. The spermatid-specific Hsp70 antigens were not detectable in the testes of the animals examined. From results of immunohistochemistry with BRM22 monoclonal antibody which reacts broadly with Hsp70 family proteins, however, we revealed constitutive expression of antigens of Hsp70-related proteins in spermatogenic cells of the vertebrates. These results suggest that the expression of spermatid-specific Hsp70 protein may be involved in the developmental pathway during spermiogenesis in mammals rather than in thermotolerance.-KEY WORDS: Hsp70, immunohistochemistry, mammal, spermatogenesis, testis migration.
doi:10.1292/jvms.61.381 pmid:10342289 fatcat:enxbhdb3gzfcnc27jxxjc7jdfm