Combined use of total fluorine and oxidative fingerprinting for quantitative determination of side-chain fluorinated polymers in textiles [post]

Ioannis Liagkouridis, Raed Awad, Steffen Schellenberger, Merle Plassmann, Ian Cousins, Jonathan Benskin
2021 unpublished
Given their extensive production volumes and potential to form persistent perfluoroalkyl acids (PFAAs), there is concern surrounding the ongoing use of side-chain fluorinated polymers (SFPs) in consumer products. Targeted SFP quantification relies on matrix assisted laser desorption ionization-time-of-flight mass spectrometry, which suffers from poor accuracy and high detection limits. Alternatively, total fluorine (TF)-based methods can be used, but these approaches report concentrations on a
more » ... fluorine equivalent" basis (e.g. F/m2 in the case of textiles) and are incapable of elucidating structure/chain length, which is critical for predicting the identity and quantity of degradation products. Here a new method for comprehensive characterization of SFPs is presented, which makes use of the total oxidizable precursors assay for fingerprint-based structural elucidation, and combustion ion chromatography for TF quantification. When used in parallel, quantitative determination of SFPs (in units of mass of CnF2n+1/m2 textile) is achieved. Expressing SFP concentrations in terms of mass of side-chain (as opposed to fluorine equivalents) facilitates estimation of both the structure and quantity of PFAA degradation products. As a proof-of-principle, the method was applied to six unknown SFP-coated medical textiles from Sweden. Four products contained C6-fluorotelomer-based SFPs (concentration range 36-188 mg C6F13/m2), one contained a C4-sulfonamide-based SFP (718 mg C4F9/m2), and one contained a C8-fluorotelomer-based SFP (249 mg C8F17/m2).
doi:10.26434/chemrxiv-2021-jpxbh fatcat:776o6yqlp5gsrl4g42bkp5awzi