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Abstract— We consider the problem of finding an optimal
feedback controller for a networked Markov decision process.
Specifically, we consider a network of interconnected subsys-
tems, where each subsystem evolves as a Markov decision
process (MDP). A subsystem is connected to its neighbors via
links over which signals are delayed. We consider centralized
control of such networked MDPs. The controller receives
delayed state information from each of the subsystem, and
it chooses control actions for all subsystems. Such networked
MDPs can be represented as partially observed Markov decision
processes (POMDPs). We model such a POMDP as a Bayesian
network and show that an optimal controller requires only a
finite history of past states and control actions. The result is
based on the idea that given certain past states and actions,
the current state of the networked MDP is independent of the
earlier states and actions. This dependence on only the finite
past states and actions makes the computation of controllers
for networked MDPs tractable.

I. I NTRODUCTION AND PRIOR WORK

We consider a network of interconnected subsystems,
where each subsystem evolves as a Markov decision process.
Each subsystem has a finite state space and its state evolution
is affected by delayed state of its neighbors. A centralized
controller receives delayed state measurements from each
of the subsystem. We refer to such systems asnetworked
Markov decision processes.

In networked MDPs, the controller receives delayed state
information from each subsystem. Since the current state of
each subsystem is not available to the controller, this system
can be represented as a partially observed Markov decision
process (POMDP). Optimal control design for POMDPs has
been studied extensively in literature [1], [2], [3]. The sepa-
ration theorem for POMDPs states that the optimal controller
is a function of the posterior distribution of the current state
given all past observations. The control of a single MDP
with delayed state information was considered in [4]. It was
shown that the optimal control action depends upon the last
observed state and a finite number of previous actions. For
distributed systems, the earliest result was obtained in [5],
where the separation structure forone-step delay sharing
pattern for general non-linear dynamics was obtained.

A general networked system with arbitrary delay pattern
was first considered in [6]. It was shown that a centralized
optimal controller for such systems need only store the past
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few states of each subsystem and past few actions. In [7], the
authors extend this result to a case where control action is
applied to every subsystem. Using the principle of dynamic
programming, the authors show that for networked MDPs,
the information state consists of only a finite past history
of states and actions. In this paper, we show that the finite
history of states and actions that was obtained in [7] is
exactly same as the information required to estimate the
current state of the system. This, along with the separation
principle, provides an alternate proof and additional insights
into the finite memory of the controllers for networked
MDPs. It shows that the finiteness of the bands occurs
because given the finite history of states and actions, the
current state of the system is independent of the remaining
states and actions.

Notation: In the remainder of the paper, we use the
following notation. We use superscripts to denote particular
subsystems and subscripts for the time index. Thusx1

t

denotes the state of the subsystem1 at time t. We usez
to denote a realization of the statex and usea to denote
a realization of the control inputu. We definexi

t1:t2 :=
(

xi
t1

, . . . , xi
t2

)

to refer to the list of variables corresponding
to the subsystemi from timet1 to t2. If t2 < t1, we interpret
the list as empty. To denote the list of variables corresponding
to all subsystems, we definext :=

(

x1
t , . . . , x

n
t

)

. Similarly,
we denoteut :=

(

u1
t , . . . , u

n
t

)

as the control action applied
to all subsystems at timet. We defineAi

0···t to be the
product of the variables corresponding to times0, . . . , t, that
is Ai

0···t := Ai
0A

i
1 . . . Ai

t. For a setX , we denoteXn to be the
n-fold cartesian product of the set, that isXn = X ×· · ·×X
n-times, with the interpretation thatX 0 = φ. We writeN for
the set of natural numbers.

II. M ODEL AND DEFINITIONS

A. Networked Markov Decision Processes

A networked Markov decision process is a weighted
directed graphG = (V, E), where V = {1, . . . , n} is a
finite set of vertices andE ⊂ V × V is a set of edges.
Each vertexi ∈ V represents a Markov decision process.
An edge(i, j) ∈ E if the MDP at vertexi directly affects
the MDP at vertexj. Associated with each edge(i, j) ∈ E is
a nonnegative integer weight,Mij , which specifies the delay
for the dynamics of vertexi to propagate to vertexj. We
assume that(i, i) /∈ E .

Associated with eachj ∈ V, letIj be the set of all vertices
with an incoming edge to vertexj, specifically

Ij = { i ∈ V | (i, j) ∈ E }.
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Similarly, for eachj ∈ V, let Oj be the set of all vertices
connected to by an edge outgoing from vertexj, specifically

Oj = { i ∈ V | (j, i) ∈ E }.

Associated with each subsystemi ∈ V is the finite setX i,
such that the state of subsystemi at time t is xi

t ∈ X i. The
system dynamics are

xi
t+1 = f i

(

xi
t, {x

j
t−Mji

| j ∈ Ii}, ui
t, w

i
t,

)

(1)

for all i ∈ V. Here we write the functionf i taking an
argument which is a set, with the understanding that the
elements of the set are associated with particular vertices
(in a programming language we would say thatf takes
named arguments). Subsystemi has control actionui

t ∈ U i

applied at timet, whereU i has finite cardinality. The random
variablesxi

0, w
i
t for t ≥ 0 and i ∈ V are independent,i.e.,

the noise processes are independent across both time and
subsystems.

Associated with each subsystemi ∈ V we have a nonneg-
ative integerNi. The observations received by the controller
at time t consist of the state of the subsystemi delayed by
Ni time steps. At timet the controller thus receivesxi

t−Ni

for all i ∈ V. The controller chooses input{ui
t | i ∈ V} at

time t based on history of these observations and its previous
actions.

Transition probabilities. For p ∈ X i, let Ai
0(p) =

Prob(xi
0 = p) define the probability mass function of the

initial state of subsystemi ∈ V. The initial statesx1
0, . . . , x

n
0

are chosen independently. Let

Ai
t(z, p, q, a) = Prob

(

xi
t = z | xi

t−1 = p,

{xj
t−1−Mji

= qj | j ∈ Ii}, ui
t−1 = a

)

, (2)

be the conditional probability mass function of statexi
t given

the previous statesxi
t−1 and {xj

t−1−Mji
| j ∈ Ii} and the

applied inputui
t−1. These probability mass functions are

uniquely defined by equation (1) along with the statistics of
the noise processeswi

t. Also note that given these probability
mass functions and the Markov assumption on the system,
we can easily derive the functionsf i governing the system
dynamics in equation (1). Thus, these mass functions are
an equivalent representation of the system. The probability
mass functions also encode the conditional dependence of
the statexi

t on the previous state of systemi and past states
of systemsj ∈ Ii.

Measurements available to the controller.We would
like to consider the optimal performance achievable when
the controller has access to the entire measurement history,
and show that this level of performance may be achieved
even if the controller only stores recent measurements. The
complete history of measurements is defined as follows.

Definition 1: We defineht to be the information available
to the controller at timet, given by

ht =
(

x1
0:t−N1

, u1
0:t−1, . . . , x

n
0:t−Nn

, un
0:t−1

)

.

Also denoteit to be a realization ofht as

it =
(

z1
0:t−N1

, a1
0:t−1, . . . , z

n
0:t−Nn

, an
0:t−1

)

.

Further, define the setHt as

Ht =

n
∏

i=1

(

X i
)t+1−Ni

×
n

∏

i=1

(

U i
)t

Here the sequencesz anda specify the values of a realization
of x andu, respectively. We consider generalmixed policies
for the controller input,i.e., we consider controllers such
that the control input at timet is specified by a probability
distribution which is a function of the observations available
to the controller. To do this, let the conditional probability
for the control actionut be Kt, so that

Kt(at, yt) = Prob(ut = at | ht = it)

Note that deterministic controllers are a special case of the
above; a deterministic controller can be chosen by choosing
all the densitiesKt to be atomic. Also note that an optimal
controller may always be found which is deterministic, and
we explain how to construct it in this paper.

1) Example: Before we introduce the main result, we
illustrate the main point of the paper via an example.
Consider a networked MDP as shown in Figure 1. From
the results proved in the paper, we would show that for such
a networked system, the optimal controller is only required
to storebi + 1 values of the state of systemi anddi values
of the past inputs to the subsystemi, where

b1 = max{0, N2 + M12 − N1},

b2 = max{0, N1 + M21 − N2},

d1 = max{N1, N2 − M21 − 1},

d2 = max{N2, N1 − M12 − 1}.

(3)

In other words, an optimal controller exists for which
the control actionut is a memoryless function of pre-
vious control inputsui

t−di
, . . . , ui

t−1 and measurements
xi

t−Ni−bi
, . . . , xi

t−Ni
only.

S2S1

Controller

M12

M21

N2N1

Fig. 1. A network of two interconnected subsystems with delays.
Subsystemi is denoted bySi, the network propagation delay fromSi to
Sj is denoted byMij and the measurement delay fromSi to the controller
is denotedNi.

B. Bayesian Networks

A Bayesian network [8],Nb = {Gb,Pb} consists of

• A directed acyclic graphGb = (Vb, Eb), and
• A set of conditional probability distributionsPb.
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Here the subscriptb stands for Bayesian and is used to
distinguish the Bayesian network graph from the networked
MDP graphG as defined in the previous section. Associated
with each vertexv ∈ Vb of the graphGb, is a random
variableXv taking values in a particular set. A directed edge
e ∈ Eb between vertices describe the conditional dependence
between the random variables corresponding to the vertices.
If there is a directed edge from a vertexv1 to v2, we say
that v2 is a child ofv1 and thatv1 is a parent ofv2. The set
of parent vertices of a vertexv is denoted by parent(v).

The set of probability distributionsPb contains one dis-
tribution P

(

Xv|Xparent(v)
)

for every v ∈ Vb. The joint
distribution of all the variablesXk, k = 1, . . . , n is given
as

Prob
(

X1, . . . Xn

)

=

n
∏

k=1

Prob
(

Xk | parents(Xk)
)

An example of a Bayesian network is shown in Figure 2.
Here the graphGb consists of vertices{A,B,C,D,E, F}
and edges{A → C,B → C,C → D,C → E,D → F}.
The set of probabilities is given as

Pb = {P (A), P (B), P (C|A,B), P (D|C),

P (E|C), P (F |D)}.

Note that since the variablesA andB have no parents, the
probability set contains their unconditional probabilities.

A B

C

D E

F

Fig. 2. A Bayesian network with6 variables

d-Separation. As mentioned before, the graphGb en-
codes the conditional dependencies between the variables.
Conditional independence between variables is determined
by the property ofd-separation. If two variablesX and Y
are d-separated in the graph by a third variableZ, then the
variablesX and Y are conditionally independent given the
variableZ.

Definition 2: A pathπ in the graphGb = {Vb, Eb} is said
to be d-separated by a set of nodesZ ∈ Vb if and only if
one of the following holds

• π contains a chaini → z → j such thati, j ∈ π and
z ∈ Z,

• π contains a forki ← z → j such thati, j ∈ π and
z ∈ Z and

• π contains an inverted fork (or a collider)i → z ← j
such thati, j ∈ π and neitherz nor any of its children
are inZ.

The concept of d-separation is closely tied to that of a
Markov blanket. Before we define the Markov blanket, we
introduce some notation.

Remark: Consider a set of variablesX = {X1, . . . ,Xn}.
Denote P(X) to be the set consisting of all parents of
variables in the setX, not including the variables themselves.
Similarly, we denote CH(X) (and PCH(X)) to be the set
consisting of all children (parents of children) of variables
in the setX, not including the variables themselves.

Definition 3 (Markov Blanket):The Markov blanket of
set of variablesX = {X1, . . . ,Xn}(denoted by MB(X))
is given as

MB(X) = P(X) ∪ CH(X) ∪ PCH(X) (4)
The following theorem (see [8] for the proof) states that

the variables in the setX are independent of the rest of the
graph given its Markov blanket.

Theorem 4:Given a finite Bayesian network and two
distinct variablesX andY /∈ MB(X), we have

Prob
(

X|MB(X), Y
)

= Prob
(

X|MB(X)
)

The Markov blanket of the set of variables shields the
variables from the rest of the graph. Thus, the Markov
blanket is the only knowledge required to predict the value
of the variables. Furthermore, if all the variables in Markov
blanket ofX are known, thenX is d-separated from the rest
of the graph [8].

C. Networked MDPs as Bayesian Networks

In this subsection, we model networked Markov decision
processes as Bayesian networks in a natural way. Consider
a networked MDP given by a graphG = {V, E}, where we
let V = {1, . . . , n}. As before, for eachi ∈ V. we have
xi

t ∈ X i. For the reminder of the paper, we would consider
the evolution of the networked MDP over a finite horizon
T . Associated with this networked MDP, we can construct
a finite Bayesian networkNb = {Gb,Pb}. The vertex setVb

is given as

Vb =
{

vstate
i,t | i ∈ V, t = 0, 1, . . . , T

}

⋃

{

vaction
i,t | i ∈ V, t = 0, 1, . . . , T − 1

}

Associated with a vertexvstate
i,t is the random variablexi

t,
taking values in the finite setX i, that corresponds to the
state of subsystemi at time t. Similarly, associated with a
vertexvaction

i,t is the random variableui
t, taking values in the

finite setU i, that corresponds to the control action applied
to subsystemi at time t. The edge setEb consists of the
following edges.

Eb =
{

vstate
i,t → vstate

i,t+1, v
state
j,t−Mji

→ vstate
i,t+1,

vaction
i,t → vstate

i,t+1, v
state
i,0:t−Ni

→ vaction
k,t ,

vaction
i,0:t−1 → vaction

k,t | j ∈ Ii, i, k ∈ V, t ∈ N
}
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Here vstate
i,0:t−Ni

→ vaction
k,t is interpreted as a directed edge

betweenvstate
i,τ → vaction

k,t for everyτ = 0, . . . , t−Ni. An edge
vstate

j,t−Mji
→ vstate

i,t+1 means that the random variablexj
t−Mji

affects the random variablexi
t+1. Similar interpretations exist

for other edges in the edge setEb. The set of conditional
probability densitiesPb consists of all the transition proba-
bilities, that is

Pb =
{

Ai
t | i ∈ V, t = 0, . . . , T

}

∪
{

Kt | t = 0, . . . , T −1
}

For a finite time horizonT , let ST be the set of random
variables given as

ST =
{

xi
t | i ∈ V, t = 0, 1, . . . , T

}

⋃

{

ui
t | i ∈ V, t = 0, 1, . . . , T − 1

}

The joint probability density function of all the variablesin
the setST can then be written as

Prob (ST ) = A1
0:T A2

0:T . . . An
0:T K0:T−1

As an example, consider again the networked system of
Figure 1. The system dynamics equations are given as

x1
t+1 = f1(x1

t , x
2
t−M21

, u1
t , w

1
t ),

x2
t+1 = f2(x2

t , x
1
t−M12

, u2
t , w

2
t ).

(5)

For the purpose of this example, we chooseM12 = 2 and
M21 = 1. Thus, the transition probability matrices are given
as

A1
t

(

z1
t , z1

t−1, z
2
t−2, a

1
t−1

)

= Prob
(

x1
t = z1

t | x1
t−1 = z1

t−1,

x2
t−2 = z2

t−2, u
1
t−1 = a1

t−1

)

, (6)

and

A2
t

(

z2
t , z2

t−1, z
1
t−3, a

2
t−1

)

= Prob
(

x2
t = z2

t | x2
t−1 = z2

t−1,

x1
t−3 = z1

t−3, u
2
t−1 = a2

t−1

)

, (7)

Associated with this networked control system is a
Bayesian network as shown in Figure 3. The directed acyclic
graph Gb consists of a vertex for each state of the two
systems and two control actions applied at timet. A directed
edge between two verticesv1 and v2 exists if the variable
corresponding to vertexv1 affects the variable corresponding
to vertexv2. For example, a directed edge exists between the
vertex corresponding tox2

t−2 and the vertex corresponding to
x1

t . Similarly, a directed edge exists between the vertex corre-
sponding to control actionu2

t−1 and the vertex corresponding
to x2

t . The set of probability distributionsPb consists of the
transition probabilitiesA1

t , A2
t andKt for all t ≥ 0.

III. M AIN RESULTS

Before we present the statement of the theorem, we make
the following definitions.

Definition 5: Let

di = max{Ni,max
k∈Ii

(Nk − Mki − 1)} (8)

and define the integersbi by

bi = max{di, max
k∈Oi

(dk + Mik)} − Ni (9)

Define

hmem
t =

(

x1
t−N1−b1:t−N1

, u1
t−d1:t−1, . . . ,

xn
t−Nn−bn:t−Nn

, un
t−dn:t−1

)

(10)

to the finite history of observations at timet and denote

imem
t =

(

z1
t−N1−b1:t−N1

, a1
t−d1:t−1, . . . ,

zn
t−Nn−bn:t−Nn

, an
t−dn:t−1

)

to be a realization ofhmem
t . Further define the setHmem

t as

Hmem
t =

n
∏

i=1

(

X i
)bi+1

×
n

∏

i=1

(

U i
)di

.

x1 x2u1 u2

t

t − 1

t − 2

t − 3

t − 4

t − 5

Fig. 3. The Bayesian network associated with the 2-subsystems networked
MDP of Figure 1. Here the circle represents the state of the two subsystems
and the square represents the control input. For this Bayesian network, we
choseM21 = 1 and M12 = 2. The edges from state variables to control
inputs have been omitted for visual clarity.

From the separation principle [1], we know that the
optimal control action is a function of the belief state. We
define the set of belief states at timet as follows.

Definition 6: Let Mt be a set defined as

Mt =
{

Λt : X (n) ×Ht → [0, 1] | Λt(zt, it) ≥ 0,
∑

zt

Λt(zt, it) = 1
}

,

where we denoteX (n) =
∏n

i=1 X
i to be the cartesian

product of the state space corresponding to all vertices.
Here,Λt(zt, it) is interpreted as the conditional probability
density of the current state of the system given the entire
observation history at timet. That is

Λt(zt, it) = Prob (xt = zt | ht = it)

Let Ft : Ht → Mt be a operator that maps the
entire observation history at timet to an element inMt.
That is, the operatorFt maps the observation history to
a belief state. Furthermore, letTt : Mt → A be the
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operator that maps belief state to a control action. From the
separation principle [1], we know that the optimal control
K∗

t , as function of the observation historyit, is given as

K∗
t = Tt ◦ Ft

That is,K∗
t (at, it) = Tt (at,Λt(·, it)).

The main result of the paper shows that for networked
MDPs, there exists an optimal controller that depends only
on imem

t . LetP : Ht → Hmem
t be the projection operator that

projects the entire observation history to a truncated history
as defined in equation (10). The following theorem shows
that there exists an operatorFmem

t : Hmem
t → Mt such that

Ft = Fmem
t ◦ P

Theorem 7:For a networked Markov decision process,
there existsΛ∗

0, . . . Λ
∗
T such that

Λt (zt, it) = Λ∗
t (zt, i

mem
t ) ∀ t = 0, 1, . . . T. (11)

Thus, there exists an optimal controllerK∗
0 , . . . ,K∗

T−1 such
that

K∗
t (at, it) = Tt (at,Λ

∗
t (·, imem

t ))

= K̂t (at, i
mem
t ) ∀ t = 0, 1, . . . T − 1. (12)

Thus, bi’s are the bounds on the length of the observation
history that an optimal estimator needs to maintain beyond
it current observation.

Before we present the proof of the Theorem 7, we first
prove a key lemma.

Lemma 8:Suppose there exists an optimalK∗
j , j = t +

1, . . . , T − 1 such that

K∗
j (aj , ij) = K̂j

(

aj , i
mem
j

)

for all aj . Then

K∗
t (at, it) = K̂t (at, i

mem
t )

for all at.
Proof. From the separation principle [1], we know that

K∗
t (at, it) = T (at,Λt (·, it))

Thus, to prove the lemma it suffices to show thatΛt (zt, it) =
Λ∗

t (at, i
mem
t ). At time t, the controller knows it =

{zi
0:t−Ni

, ai
0:t−1 | i ∈ V}. Let

Su
t =

(

x1
t−N1+1:t, . . . , x

n
t−Nn+1:t

)

be the states that are unknown at the controller at timet.
Here the superscriptu is used to indicate that these states
are unknown to the controller at timet. Note that states of
subsystemi are part ofSu

t if and only if Ni ≥ 1. This is
because ifNi = 0, then the current state of subsystemi is
known to controller. Let

Zu
t =

(

z1
t−N1+1:t, . . . , z

n
t−Nn+1:t

)

be a realization ofSu
t . Let Lt (Zu

t , it) be the joint conditional
probability of the variables in the setSu

t given it. That is,

Lt (Zu
t , it) = Prob

(

Su
t = Zu

t | ht = it
)

Define

L∗
t (Zu

t , imem
t ) = Prob

(

Su
t = Zu

t | hmem
t = imem

t

)

.

If we can show that there existsL∗
t such that

Lt (Zu
t , it) = L∗

t (Zu
t , imem

t ) , (13)

then it follows that

Λt (zt, it) =
∑

{zi
t−Ni+1:t−1

|i∈V}

Lt (Zu
t , it)

=
∑

{zi
t−Ni+1:t−1

|i∈V}

L∗
t (Zu

t , imem
t )

= Λ∗
t (zt, i

mem
t ) (14)

Thus, to prove the lemma it suffices to find anL∗ satisfying
equation (13). To prove the existence of anL∗, we show that
the Markov blanket of the setSu

t consists of the variables
imem
t . Theorem 4 would then prove the existence ofL∗.

Note thatSu
t containsxj

t−τj
for τj = 0, 1, . . . , Nj −1 and

j = 1, 2, . . . , n. From equation (4), we know that the Markov
blanket ofSu

t consists of parents, children and parents of
children of the variables in the setSu

t . We focus on a single
variablexj

t−τj
and find its parents, its children and all the

parents of its children.
To find the parents ofxj

t−τj
, we look at the transition

probability of this variable. From equation (2), we note that
xj

t−τj
depends on

P
(

xj
t−τj

)

=
{

xj
t−τj−1, u

j
t−τj−1, x

s
t−(τj+1+Msj)

| s ∈ Ij
}

,

(15)
and hence these variables are the parents ofxj

t−τj
.

To find the children ofxj
t−τj

, consider the setOj of
outgoing vertices of subsystemj and let p ∈ Oj . Con-
siderAp

t−t′ and note that this transition probability contains
xj

t−t′−1−Mjp
. Thus, xj

t−τj
would be a parent ofxp

t−t′ for
all p ∈ Oj , if t − t′ − 1 − Mjp = t − τj , which gives that
t′ = τj − 1 − Mjp.

Note that the children ofxj
t−τj

also consist of all the
control variables that depend onxj

t−τj
. From the assumption

in the lemma, we know that theK∗
t+1:T−1 are only a

function of the finite past history of states given byimem.
Thus, a directed edge exists betweenxj

t−τj
andut−t′ for all

t′ = τj − Nj − bj : τj − Nj . Thus, the children ofxj
t−τj

consists of

CH
(

xj
t−τj

)

=
{

xj
t−τj+1, x

p
t−τj+Mjp+1 | p ∈ Oj

}

⋃

{

uk
t−τj+Nj :t−τj+Nj+bj

| k ∈ V
}

(16)

To find the parents of children ofxj
t−τj

, we find the parents
of the variables given in equation (16). From transition prob-
ability equation (2), we note that the parents ofxp

t−τj+Mjp+1

include
{

xp
t−τj+Mjp

, up
t−τj+Mjp

, xr
t−τj+Mjp−Mrp

| r ∈ Ip
}
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To find the parents of{uk
t−τj+Nj :t−τj+Nj+bj

| k ∈ V},
we note that from the assumption in the lemma, these
control inputs only depend onimem

t . Thus, the parents of
{uk

t−τj+Nj :t−τj+Nj+bj
k ∈ V} consist of

{

xi
t−τj+Nj−bi−Ni:t−τj+Nj+bj−Ni

,

ui
t−τj+Nj−di:t−τj+Nj+bj−1 | i ∈ V

}

Thus we have

PCH
(

xj
t−τj

)

=
{

xs
t−τj−Msj

, uj
t−τj

, xp
t−τj+Mjp

, up
t−τj+Mjp

,

xr
t−τj+Mjp−Mrp

| s ∈ Ij , r ∈ Ip, p ∈ Oj
}

⋃

{

xi
t−τj+Nj−bi−Ni:t−τj+Nj+bj−Ni

,

ui
t−τj+Nj−di:t−τj+Nj+bj−1 | i ∈ V

}

(17)

Let us denote the set of parents, the children and the par-
ents of children ofxj

t−Nj+1:t by Mj . From equations (15),
(16), (17), we get that the setMj contains

Mj =
{

xj
t−Nj :t+1, x

s
t−(Nj+Msj):t−Msj

,

xp

t−(Nj−1−Mjp):t+Mjp+1, x
r
t−(Nj−1−Mjp+Mrp):t−(Mrp−Mjp),

xi
t−Ni−bi+1:t−Ni+bj+Nj

| s ∈ Ij , p ∈ Oj , r ∈ Ip, i ∈ V
}

⋃

{

uj
t−Nj :t

, uk
t+1:t+Nj+bj

, up

t−(Nj−1−Mjp):t+Mjp
,

ui
t−(di−1):t+Nj+bj−1 | p ∈ Oj , k, i ∈ V

}

Let us denoteM = ∪j∈VMj . Note thatuk
t−sk

∈ M if
sk ≥ Nk or sk ≥ Nj−1−Mjk for all j ∈ Ik or sk ≥ dk−1.
From definition 5, this implies that

sk = max
{

Nk, dk − 1, Nj − Mjk − 1 | j ∈ Ik
}

= dk

Similarly, xk
t−qk

∈ S if and only if xk
t−qk

∈ M. This happens
if one of the following conditions holds.

1) qk ≥ Nk.
2) qk ≥ Nj + Mkj such thatk ∈ Ij for somej ∈ V.

This happens for allj ∈ Ok.
3) qk ≥ (Nj − 1 − Mjk) such thatk ∈ Oj for some

j ∈ V. That is if qk = (Nj − 1−Mjk) for all j ∈ Ik.
4) For the last term, we need to find allj ∈ V such that

for all p ∈ Oj , we havek ∈ Ip. This happens for
all j ∈ Ip, such thatp ∈ Ok. Thus we haveqk ≥
Nj − 1 − Mjp + Mkp for all p ∈ Ok and all j ∈ Ip.

5) qk ≥ bk + Nk − 1

Thus, we get that

qk = max
{

Nk, Ns + Mks, Nr − 1 − Mrk,

Np−1−Mps+Mks, bk+Nk−1 | p ∈ Is, s ∈ Ok, r ∈ Ik
}

Using the definition ofbk and dk, it is easy to verify that
qk = bk + Nk. This proves that the Markov blanket of the
variablesSu

t consists of onlyimem
t . Thus, there existsL∗

t such

that equation (13) is satisfied. The lemma then follows from
equation (14).

Proof of Theorem 7. To prove the main theorem, we first
show that at timeT − 1, the belief state is only a function
of imem

T−1. To see this, note that at timeT − 1, the set of
unknown states at the controllerSu

T has no children. Thus,
using a simplified version of the argument given in the proof
of lemma 8, it is easy to verify that there existsΛ∗

T−1 such
that

ΛT−1 (aT−1, iT−1) = Λ∗
T−1

(

aT−1, i
mem
T−1

)

.

Thus, there exists an optimal controllerK∗
T−1 such that

K∗
T−1 (aT−1, iT−1) = T

(

aT−1,Λ
∗
T−1

(

·, imem
T−1

))

= K̂T−1

(

aT−1, i
mem
T−1

)

The proof of the theorem then follows from the inductive
argument using Lemma 8.

IV. CONCLUSIONS

We studied centralized control of networked Markov
decision processes with delays using a Bayesian network
approach. Each subsystem in the networked MDP transmits
its state to a controller via a link with an associated delay.
Since the controller does not have access to the current
state of the system, this networked MDP can be modeled
as a POMDP. For this POMDP, the optimal control action
at time t is a function of the belief state at timet which
is the conditional distribution of the current state of the
system given the entire past observation history. We show
that the for networked MDPs with delays, the belief state
is a function of only the finite history of observations. In
particular, the optimal controller depends on only the most
recentbi +1 states received from subsystemi anddi control
inputs applied to subsystemi. The bandsbi and di depend
on the inter-subsystem delays, the measurement delays and
the underlying graph structure of the networked MDP.
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