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Abstract—We consider the problem of finding an optimal few states of each subsystem and past few actions. In [7], the
feedback controller for a networked Markov decision process. authors extend this result to a case where control action is
Specifically, we consider a network of interconnected subsys- applied to every subsystem. Using the principle of dynamic

tems, where each subsystem evolves as a Markov decision .
process (MDP). A subsystem is connected to its neighbors via programming, the authors show that for networked MDPs,

links over which signals are delayed. We consider centralized the information state consists of only a finite past history
control of such networked MDPs. The controller receives of states and actions. In this paper, we show that the finite

delayed state information from each of the subsystem, and history of states and actions that was obtained in [7] is
it chooses control actions for all subsystems. Such networked exactly same as the information required to estimate the

MDPs can be represented as partially observed Markov decision . . .
processes (POMDPS). We model such a POMDP as a Bayesiancurrent state of the system. This, along with the separation

network and show that an optimal controller requires only a  Principle, provides an alternate proof and additionalghts
finite history of past states and control actions. The result is into the finite memory of the controllers for networked

based on the idea that given certain past states and actions, MDPs. It shows that the finiteness of the bands occurs
the current state of the networked MDP is independent of the  acause given the finite history of states and actions, the

earlier states and actions. This dependence on only the finite t state of th t is ind dent of th .
past states and actions makes the computation of controllers current staie of the sysiém IS Independent of the remaining

for networked MDPs tractable. states and actions.
Notation: In the remainder of the paper, we use the
following notation. We use superscripts to denote paricul
We consider a network of interconnected subsystemsubsystems and subscripts for the time index. Thiis
where each subsystem evolves as a Markov decision procegenotes the state of the subsysténat time ¢t. We usez
Each subsystem has a finite state space and its state emolutio denote a realization of the staieand usea to denote
is affected by delayed state of its neighbors. A centralized realization of the control input. We definez} ., :=
controller receives delayed state measurements from eaglj ,...,z} ) to refer to the list of variables corresponding
of the subsystem. We refer to such systemshatworked to the subsystemfrom timet; to t,. If ¢ty < ¢, we interpret
Markov decision processes the list as empty. To denote the list of variables correspand

In networked MDPs, the controller receives delayed stat® all subsystems, we defing := (xg, . ,a:f’). Similarly,
information from each subsystem. Since the current state wle denoteu, := (u{,...,uy) as the control action applied
each subsystem is not available to the controller, thisesyst to all subsystems at time. We define A}, to be the
can be represented as a partially observed Markov decisiproduct of the variables corresponding to tinfes. . , ¢, that
process (POMDP). Optimal control design for POMDPs haig A} , := A{A¢ ... AL For a sett, we denoteX™ to be the
been studied extensively in literature [1], [2], [3]. Thepae n-fold cartesian product of the set, thati® = X' x-- - x X
ration theorem for POMDPs states that the optimal controllen-times, with the interpretation that® = ¢. We write N for
is a function of the posterior distribution of the currerdtst the set of natural numbers.
given all past observations. The control of a single MDP
with delayed state information was considered in [4]. It was Il. MODEL AND DEFINITIONS
shown that the optimal control action depends upon the lagt Networked Markov Decision Processes
observed state and a finite number of previous actions. For
distributed systems, the earliest result was obtained Jin [5di
where the separation structure fone-step delay sharing fi
pattern for general non-linear dynamics was obtained.

A general networked system with arbitrary delay patter
was first considered in [6]. It was shown that a centralize
optimal controller for such systems need only store the pagt

I. INTRODUCTION AND PRIOR WORK

A networked Markov decision process is a weighted
rected graphG = (V,€), whereV = {1,...,n} is a
nite set of vertices and C V x V is a set of edges.
Each vertexi € V represents a Markov decision process.
An edge(i,j) € € if the MDP at vertexi directly affects
e MDP at vertexj. Associated with each eddg, j) € £ is
nonnegative integer weight/;;, which specifies the delay
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Similarly, for eachj € V, let ©7 be the set of all vertices Also denotei, to be a realization of, as
connected to by an edge outgoing from verjespecifically ) 1 1 " "
‘ it = (20— Ny O0:t— 1 -+ 202t — Ny > Wit —1) -
) — ; g .
o lievIGiee} Further, define the sét; as
Associated with each subsystént V is the finite sett? n . n
. K ! i +1—N; it
such that the state of subsystérat timet is z! € X*. The He =[] () < [T @)

system dynamics are i=1 . i=1 —
y y Here the sequencesanda specify the values of a realization

ﬂﬁiﬂ — i (x;’ {xLMﬁ lje f’}’Uivwi’) 1) of z andu, respect_ively. .We consider.generalxed policies
for the controller input,.e, we consider controllers such
for all i € V. Here we write the functionf’ taking an that the control input at time is specified by a probability
argument which is a set, with the understanding that th@istribution which is a function of the observations avalita
elements of the set are associated with particular verticé® the controller. To do this, let the conditional probétgili
(in a programming language we would say thattakes for the control actionu; be K, so that
named arguments). Subsystérhas control action: € U* .
applied at time, wherel/* has finite cardinality. The random Klar, yn) = Problug = ay | he = i1)
variableszy, w; for t > 0 andi € V are independenf,e,  Note that deterministic controllers are a special case ef th
the noise processes are independent across both time amdve; a deterministic controller can be chosen by choosing
subsystems. all the densitiess; to be atomic. Also note that an optimal
Associated with each subsysteénz V we have a nonneg- controller may always be found which is deterministic, and
ative integerN;. The observations received by the controllesve explain how to construct it in this paper.
at timet¢ consist of the state of the subsystérdelaye_d by 1) Example: Before we introduce the main result, we
N; time steps. At time the controller thus receives,_,, illustrate the main point of the paper via an example.
for all i € V. The controller chooses inpyt:; | i € V} at  Consider a networked MDP as shown in Figure 1. From
time ¢ based on history of these observations and its previotise results proved in the paper, we would show that for such

actions. a networked system, the optimal controller is only required
Transition probabilities. For p € X*¢, let Aj(p) = to storeb; + 1 values of the state of systeirandd; values

Prob(z{, = p) define the probability mass function of theof the past inputs to the subsystéfrwhere

initial state of subsysteme V. The initial states}, ..., 3

b1 = max{0, Ny + M3 — N1},
by = max{0, N1 + My, — Ny},
Al(z,p,q,a) = Prob(mi =z |z, =p, di = max{Ny, Ny — Moy — 1},

{$g717Mji =¢ |jeThu_, = a), @) dy = max{N.Q,N1 My — 1} | |
In other words, an optimal controller exists for which

be the conditional probability mass function of stajegiven the control actionu, is a memoryless function of pre-
the previous states; , and{«; , ,, |;j € I'} and the vious control inputsu; , ...,u; ; and measurements
applied inputu}_,. These probability mass functions areZ;_n,—_s,:--->%;_n, only.
uniquely defined by equation (1) along with the statistics of
the noise processes . Also note that given these probability Mz >
mass functions and the Markov assumption on the system, St Sy
we can easily derive the function$ governing the system ~ My
dynamics in equation (1). Thus, these mass functions are
an equivalent representation of the system. The probabilit
mass functions also encode the conditional dependence of v
the stater! on the previous state of systenand past states Controller
of systemsj € 7°.

Measurements available to the controllerWe would , ,
like to consider the optimal performance achievable V‘,’heggbs;stemAis ':jeetnwgt;kd %;;;’?’?hé”féfxg:‘ke;ﬂ%‘:)azggzﬁsfgfy ‘f"r’(')tgl (ﬁ'ay
the controller has access to the entire measurement histosy is denoted by\/;; and the measurement delay frf to the controller
and show that this level of performance may be achieveegl denotedV;.
even if the controller only stores recent measurements. The
complete history of measurements is defined as follows. g Bayesian Networks

Definition 1: We defineh; to be the information available
to the controller at time, given by

are chosen independently. Let

®3)

N2

————

-

A Bayesian network [8]N, = {Gy, Py} consists of
« A directed acyclic graplg, = (W, &), and
P = (T4 Ny s Ubst—1s -  -> Tt N, » Ulp—1 ) - « A set of conditional probability distribution®;.



Here the subscripb stands for Bayesian and is used to « 7 contains an inverted fork (or a collidei)— z < j

distinguish the Bayesian network graph from the networked such thati, j; € = and neitherz nor any of its children

MDP graphg as defined in the previous section. Associated are inZ.

with each vertexv € V), of the graphg,, is a random The concept of d-separation is closely tied to that of a

variable X, taking values in a particular set. A directed edgeMarkov blanket. Before we define the Markov blanket, we

e € &, between vertices describe the conditional dependenagroduce some notation.

between the random variables corresponding to the vertices Remark: Consider a set of variable¥ = {X1,..., X, }.

If there is a directed edge from a vertex to v;, we say Denote RX) to be the set consisting of all parents of

that v, is a child ofv; and thatv; is a parent ofv;. The set variables in the seX, not including the variables themselves.

of parent vertices of a vertex is denoted by parefit). Similarly, we denote CKX) (and PCHX)) to be the set
The set of probability distribution®, contains one dis- consisting of all children (parents of children) of variesl

tribution P(X,|Xparentv) for every v € V,. The joint in the setX, not including the variables themselves.

distribution of all the variablesX,,k = 1,...,n is given Definition 3 (Markov Blanket).The Markov blanket of
as set of variablesX = {Xi,..., X, }(denoted by MBX))
is given as

Prob(Xy,... X,) = [ ] Prob(Xy | parentXy))

b MB(X) = P(X) UCH(X) UPCHX) 4

The following theorem (see [8] for the proof) states that

An example of a Bayesian network is shown in Figure Zhe variables in the seX are independent of the rest of the
Here the graply, consists of verticed A, B,C, D, E,F}  graph given its Markov blanket.

and edgesA — C,B — C,C — D,C — E,D — F}. Theorem 4:Given a finite Bayesian network and two

The set of probabilities is given as distinct variablesX andY ¢ MB(X), we have
P, = {P(A), P(B), P(C|A, B), P(D|C), Prob(X|MB(X),Y) = Prob(X|MB(X))
P(E|C), P(F|D)}. The Markov blanket of the set of variables shields the

variables from the rest of the graph. Thus, the Markov
Note that since the variable$ and B have no parents, the blanket is the only knowledge required to predict the value
probability set contains their unconditional probatti of the variables. Furthermore, if all the variables in Marko
blanket of X are known, thenX is d-separated from the rest
of the graph [8].

o 9 C. Networked MDPs as Bayesian Networks

In this subsection, we model networked Markov decision
e processes as Bayesian networks in a natural way. Consider
a networked MDP given by a gragh= {V, £}, where we
Q G let V = {1,...,n}. As before, for each € V. we have
xj € X*. For the reminder of the paper, we would consider
the evolution of the networked MDP over a finite horizon

T. Associated with this networked MDP, we can construct
e a finite Bayesian networl/, = {G, P, }. The vertex seV,
is given as

Fig. 2. A Bayesian network witlé variables

Vo= {vfliev,t=0,1,..T} |J
d-Separation. As mentioned before, the grapfi, en- action | ; < 14— 01 T_1
codes the conditional dependencies between the variables. {”’i,ff |ieV,t=0,1,....,T - }
Conditional independence between variables is determingedsyciated with a vertex$2€ is the random variabler?,

by the property ofd-separation If two variablesX andY"  (aying values in the finite set’, that corresponds to the

are d-separated in the graph by a third varialethen the  giate of subsystem at time ¢. Similarly, associated with a
variablesX andY are conditionally independent given theverteXU?‘?iO” is the random variable!, taking values in the

variable Z. _ _ ~finite seti/?, that corresponds to the control action applied
Definition 2: A path in the graphg, = {V,, &} is said 15 syhsystemy at time t. The edge sef, consists of the
to be d-separated by a set of nodés= V, if and only if following edges.

one of the following holds

« 7 contains a chain — z — j such thati,j € m and & = {vf7°— P75, vy — viEs,
€7 y action state state action
. . . .o v; Vi 415 Y4,0: —N; -
« 7 contains a forki < z — j such thati,j € = and bt T TGt 40: Skt
action ~___action ‘ icTtikeV.te N}
z € Z and Vi,0:t—1 Ukt J 2 y



Here o3¢\ — v29°"is interpreted as a directed edgeand define the integets by
betweeny3a — y2cton for everyr = 0,...,t— N;. An edge
state ;t:k’t h yTh L i AN ed bi = max{d;, max(dy + M)} — N; 9)
viim, — Uiipa means that the random variablg_,, . keoi
affects the random variable , ;. Similar interpretations exist Define
for other edges in the edge s&f. The set of conditional
probability densities?, consists of all the transition proba- = (x%,Nl,blzt,Nl,u%,dl:t,l, cey
bilities, that is x?—N,L—bn:t—Nnvu?—dn:t—1> (10)

Po={Aj|i€V, t=0,.... T}U{K, |t=0,....T—1} to the finite history of observations at timeand denote

mem
ht

For a finite time horizonl’, let Sy be the set of random mem _ (21 ol

variables given as ¢ P NIEbt N B dat B

Zt—Np—bp:t—Ny> a’t—dn:t—l)

Sr={aj|ieV, t=0,1,....T} U to be a realization of"*™. Further define the sé{"*™ as
{uj |ieVv, t=0,1,...,T -1} n

Hmem =TT (27)" " = JT @)™

The joint probability density function of all the variables
the setSr can then be written as

=1 i=1

Prob (ST) = A(l)TA(%T e A’S:TKO:T71 Ul u2
O O t
As an example, consider again the networked system of
Figure 1. The system dynamics equations are given as D""“ 1:| f—1
1 1,1 ,.2 1 1
Ty =Ff (xtvxt—vaut’wt)’ ) )
2 20,2 1 2 2
Ty = f (xt’xt—Mlgvuwwt)' g O ¢t-2
For the purpose of this example, we chodgle, = 2 and
M, = 1. Thus, the transition probability matrices are given mi o t—3
as
o o ¢-—
AL(oh 2t el ) = Prob(at = 2 oty =2, o
T_g =2} gy uj_y = a%q)a (6) o ‘oot—5
and Fig. 3. The Bayesian network associated with the 2-subsysteetworked

MDP of Figure 1. Here the circle represents the state of tlestwhsystems
of 2 92 1 2 _ 2 9, .2 2 and the square represents the control input. For this Bayewmtwork, we
A (zt » Zt—11%t—3» at—l) = Prob (xt =z | @i =24, choseMs; = 1 and M2 = 2. The edges from state variables to control
1 1 9 5 inputs have been omitted for visual clarity.
Ti—3 = #-3 U1 = at—l)v (7) . o
From the separation principle [1], we know that the

Associated with this networked control system is &ptimal control action is a function of the belief state. We
Bayesian network as shown in Figure 3. The directed acycligefine the set of belief states at timas follows.

graph G, consists of a vertex for each state of the two pefinition 6: Let M, be a set defined as

systems and two control actions applied at timaA directed

edge between two vertices and v, exists if the variable M, = {A, : X x H;, — [0,1] | A¢(z,44) > 0,

corresponding to vertex; affects the variable corresponding ZA (20,01) = 1}

to vertexv,. For example, a directed edge exists between the Bt T ’

vertex corresponding to7 , and the vertex corresponding to “

1. Similarly, a directed edge exists between the vertex eorr@here we denote¥™ = []"_, X’ to be the cartesian

sponding to control action?_; and the vertex corresponding product of the state space corresponding to all vertices.

to 7. The set of probability distribution®, consists of the Here, A;(z,i;) is interpreted as the conditional probability

transition probabilitiesA}, A? and K, for all ¢ > 0. density of the current state of the system given the entire
observation history at timé That is

At(zt,it) = PI‘Ob (LIIt = Zt | ht = Zt)

[1l. M AIN RESULTS
Before we present the statement of the theorem, we make

the following definitions. Let 7, : H: — M, be a operator that maps the
Definition 5: Let entire observation history at timeto an element inM;.
That is, the operatotF, maps the observation history to
di = max{N;, max(Ni — My; — 1)} () a belief state. Furthermore, I&f : M; — A be the



operator that maps belief state to a control action. From tHeefine
separation principle [1], we know that the optimal control

u smem u u mem mem
K}, as function of the observation histoiy is given as Li (Z¢,i7°") = Prob(Sy' = Z;' | hf i)

K =T, oF If we can show that there exisfs; such that

That is, K (ay, i¢) = T; (ar, Ay(-, i) Ly (2¢,i) = L (Z2{,i°7) (13)
The main result of the paper shows that for networke
MDPs, there exists an optimal controller that depends on
ong"™ LetP : H, — H]"°" be the projection operator that Ay (z4,00) = Z Ly (2Y,i4)
projects the entire observation history to a truncatedhjst
as defined in equation (10). The following theorem shows

ghen it follows that

{Z:—Ni+1:t—1|i€v}

that there exists an operat@f™™ : HM™ — M, such that = > Ly (2,377
ft:}'tmemoP {z_ Ny+1it— 111EVY
= A} (2, 17°™) (14)
Theorem 7:For a networked Markov decision process,
there exists\, ... A% such that Thus, to prove the lemma it suffices to find &t satisfying
equation (13). To prove the existence of ah we show that
Ay (2eyi) = Af (2,377 Yt =0,1,...T.  (11) the Markov blanket of the se§! consists of the variables
ym em i
Thus, there exists an optimal controll&f;, ..., K., such TheoreT 4 would t]hen prove the existencelof
that Note thatS;* containse;_, for 7; =0,1,..., N; —1 and
j=1,2,...,n. From equat|on (4), we know that the Markov
K} (at, i) = Ty (ag, Af (+,i7°™) blanket ofS“ consists of parents, children and parents of

= K, (as,i em) Vi=0,1,...T—1 (12 children of the variables in the s&f*. We focus on a single

Thus, b;’s are the bounds on the Iength of the observatioi@riablez? . and find its parents, its children and all the
history that an optimal estimator needs to maintain beyorRPT€NtS Of its children.

it current observation. To find the parents of:] -,» We look at the transition
Before we present the proof of the Theorem 7, we flrstgrobablhty of this variable. From equation (2), we notettha
prove a key lemma. i, depends on
Lemma 8:Suppose there exists an optim&l,j = ¢ . , .
L....,T—1 SUC%pthat PUmeS.J ! P(zi_.,) = {xlg—‘rj—hug—Tj—l’xff(TjJrlJr]\/fsj) | s € Ij}’
. (15)
K; (aj,ij) = K (aj,17°") and hence these variables are the parents] of .
for all a;. Then To find the children of:c{,ﬁ,, consider the set?j of
outgoing vertices of subsystem and letp € ©’. Con-
K} (ar,ir) = Ky (ar, i7") sider A7_,, and note that this transition probability contains
for all ay. xi V—1-M,, . Thus, z]_ - would be a parent of? ,, for

Proof. From the separation principle [1], we know that ~ all p € O, it t = — 1= Mj, = t — 7;, which gives that
t'=1; —1— Mj,.

K¢ (a,ie) = T (ar, Ae (- 12)) Note that the children of! _,, also consist of all the
Thus, to prove the lemmai it suffices to show thatz,,i,) =  control variables that depend afi_, . From the assumption
A7 (ag,iM™™). At time t, the controller knowsi; = in the lemma, we know that theKHl:Tf1 are only a
{zO:t,]\,i,af)zt,1 | i € V}. Let function of the finite past history of states given BY™.
N . . Thus, a directed edge exists betweén andu;_. for all
S = (@mre e TN ) t' =71, —N; —bj : 7;, — N;. Thus, the children oft]

be the states that are unknown at the controller at time consists of

Here the superscript is used to indicate that these states , ,

are unknown to the controller at timte Note that states of CH(xifrj) = {xi—rﬁlwf_TﬁMjﬁl |pe (9]} U
subsystemy are part ofS;* if and only if N; > 1. This is {uk ke V} (16)
because ifN; = 0, then the current state of subsysteris t= it NGt =7+ Nj+b;

known ntroller. L , . ; ,
own to controller. Let To find the parents of children of _, , we find the parents

Zr = (ZLNIH:“ R zZLN,LH;t) of the variables given in equation (16). From transitionlpro
N - " ability equation (2), we note that the parentse)f
be a realization of*. Let L; (Z},i;) be the joint conditional |nclu)(;e a @) P B 0y 1
probability of the variables in the s&* giveni,. That is,
Ip}
L, (Ztu;it) :PI‘Ob(Stu — ZZ/, | Ry :it) {l’t Ti+M;jpo t Ti+M;jp> t Ti+Mjp—Myp | re



To find the parents of{ufﬁTﬁNj:HﬁNﬁbj | £ € V}, thatequation (13) is satisfied. The lemma then follows from
we note that from the assumption in the lemma, thesequation (14). ]
control inputs only depend odf"™™ Thus, the parents of

{“5—77+Nj:t—rj+1vj+b7» k € V} consist of Proof of Theorem 7. To prove the main theorem, we first

show that at timel’ — 1, the belief state is only a function

; of 47°M. To see this, note that at tim€ — 1, the set of
{xt—rﬁNj—ba:—Ni=t—n+Nj+bj—N7zv unknown states at the controllé#: has no children. Thus,
using a simplified version of the argument given in the proof
of lemma 8, it is easy to verify that there existg._, such
Thus we have that

i .
Ut i+ Nj—dyit—7;+ N +b; —1 i€ V}

. . - * -mem
J _ s J P D Ar_i(ar—1,ir—1) = Ap_q (ar—1,9721 ) .
PCH(x/_,) = {mtfersj’ut*fj7xt7¢]+Mjp7“t77j+Mjp> ( ’ )= A7 ( i751)

i ; Thus, there exists an optimal controll&r:._, such that
x:7T7+Ajjp7M7‘p | s € I73 re _’Z'p’ pe 07} U P T-1
Ki oy (ar—,ir—1) =T (ar—1, A7y (i777))

~mem)

@
{xt—TJ+N_7—b,;—Ni:t—TJ—&-Nj—I-bj—Ni7 _ kT—l (QT—lle n

Uiy 4 Ny—dit—1,+Ny+b,—1 | 1 € V} a7 The proof of the theorem then follows from the inductive

Let us denote the set of parents, the children and the p&gument using Lemma 8. .
ents of children oerNjH:t by M;. From equations (15),
(16), (17), we get that the sett; contains IV. CONCLUSIONS
_ We studied centralized control of networked Markov
M; = {x{_Nj:tH,:z:f_(NjJrMsj):t_Msj, decision processes with delays using a Bayesian network
P approach. Each subsystem in the networked MDP transmits

,

B (NG =1 =My )et My 410 V= (Nj = 1= Mjp+ Mrp)it=(Mrp=Min) s state to a controller via a link with an associated delay.

xi—N,;—b7-,+1:t—N,;+bj+Nj |s e pe®,rell ic v} U Since the controller dqes not have access to the current
state of the system, this networked MDP can be modeled

{U{—ijUf+1:t+1vj+bj7Uf_(Nj_1_J\4jp):t+Mw, as a POMDP. For this POMDP, the optimal control action
i Ol kicV at time ¢ is a function of the belief state at timewhich
Ut—(@—1)+N; 40,1 | P €O ki€ } is the conditional distribution of the current state of the

system given the entire past observation history. We show
that the for networked MDPs with delays, the belief state
is a function of only the finite history of observations. In
particular, the optimal controller depends on only the most
S = max {Nk,dk, —1,N,—M,—1]j¢€ I’“} recentb, + 1 states received from subsystérandd; control

—dy inputs applied to subsystei The bands); and d; depend
on the inter-subsystem delays, the measurement delays and

Similarly, zy_, < Sifandonlyifzy_, € M. This happens the underlying graph structure of the networked MDP.
if one of the following conditions holds.

Let us denoteM = U;cyM;. Note thatuy ,, € M if
S > N orsy > Nj*l*]V[jk for aII] S Tk orsg >dp—1.
From definition 5, this implies that
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