Avoiding Occupancy Detection from Smart Meter using Adversarial Machine Learning [article]

ibrahim Yilmaz, Ambareen Siraj
2020 arXiv   pre-print
More and more conventional electromechanical meters are being replaced with smart meters because of their substantial benefits such as providing faster bi-directional communication between utility services and end users, enabling direct load control for demand response, energy saving, and so on. However, the fine-grained usage data provided by smart meter brings additional vulnerabilities from users to companies. Occupancy detection is one such example which causes privacy violation of smart
more » ... er users. Detecting the occupancy of a home is straightforward with time of use information as there is a strong correlation between occupancy and electricity usage. In this work, our major contributions are twofold. First, we validate the viability of an occupancy detection attack based on a machine learning technique called Long Short Term Memory (LSTM) method and demonstrate improved results. In addition, we introduce an Adversarial Machine Learning Occupancy Detection Avoidance (AMLODA) framework as a counter attack in order to prevent abuse of energy consumption. Essentially, the proposed privacy-preserving framework is designed to mask real-time or near real-time electricity usage information using calculated optimum noise without compromising users' billing systems functionality. Our results show that the proposed privacy-aware billing technique upholds users' privacy strongly.
arXiv:2010.12640v1 fatcat:4yum3vamjzcqzhfxgakn47dd3y