A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
MTFuzz: Fuzzing with a Multi-Task Neural Network
[article]
2020
arXiv
pre-print
Fuzzing is a widely used technique for detecting software bugs and vulnerabilities. Most popular fuzzers generate new inputs using an evolutionary search to maximize code coverage. Essentially, these fuzzers start with a set of seed inputs, mutate them to generate new inputs, and identify the promising inputs using an evolutionary fitness function for further mutation. Despite their success, evolutionary fuzzers tend to get stuck in long sequences of unproductive mutations. In recent years,
arXiv:2005.12392v1
fatcat:46luwyy3mja5naldfaz2lkcula