The exponent three class group problem for some real cyclic cubic number fields

Stéphane Louboutin
2001 Proceedings of the American Mathematical Society  
We determine all the simplest cubic fields whose ideal class groups have exponent dividing 3, thus generalizing the determination by G. Lettl of all the simplest cubic fields with class number 1 and the determination by D. Byeon of all all the simplest cubic fields with class number 3. We prove that there are 23 simplest cubic fields with ideal class groups of exponent 3 (and 8 simplest cubic fields with ideal class groups of exponent 1, i.e. with class number one).
doi:10.1090/s0002-9939-01-06168-8 fatcat:scv5g7axzbaevg3i26wfsidfv4