A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Classification of audio samples by convolutional networks in audio beehive monitoring
Классификация аудиофайлов с помощью сверточных нейронных сетей в электронном аудиомониторинге ульев
2018
Vestnik Tomskogo gosudarstvennogo universiteta Upravlenie vychislitel naya tekhnika i informatika
Классификация аудиофайлов с помощью сверточных нейронных сетей в электронном аудиомониторинге ульев
In the investigation, we consider the problem of classification of audio samples resulting from the audio beehive monitoring. Audio beehive monitoring is a key component of electronic beehive monitoring (EBM) that can potentially automate the identification of various stressors for honeybee colonies. We propose to use convolutional neural networks (ConvNets) and compare developed ConvNets in classifying audio samples from electronic beehive monitors deployed in live beehives. As a result,
doi:10.17223/19988605/45/8
fatcat:7upqw2tp4jarvf2hsbklwvm7ka